Star formation and reconnection diffusion of magnetic flux: a new paradigm from pc to AU scales

ElisaBete de Gouveia Dal Pino

IAG-Universidade de São Paulo

MFU IV, Playa del Carmen, February 2013

Collaborators

Reinaldo Santos-Lima (IAG-USP)

Marcia R. M. Leão (IAG-USP) Alex Lazarian (U. Wisconsin) Gzergorz Kowal (IAG-USP)

Star Formation not well understood in neither scale

~100 AU

~10 pc, 10 - 10³ cm⁻³

< 1pc, 10⁴–10⁶ cm⁻³ ~10 micro-G

Star Formation connected with turbulence

MHD turbulence super and transonic, and trans-Alfvenic (e.g. Vazquez-Semadeni et al.):

important for ISM structure & star formation

A crucial problem:

magnetic flux in young stars (TTauri) << magnetic flux of cloud progenitor

How is magnetic field removed from a cloud to allow its collapse??

Magnetic Flux Problem

Mechanism usually invoked to remove the magnetic flux excess:

Ambipolar diffusion (AD) of neutral gas through charged magnetized gas:

has been challenged by observations (Crutcher et al. 2008) and numerical simulations (Shu et al. 2006; Krasnopolsky et al. 2010, 2011; Li et al. 2011, Hennebelle et al); (also McKee's and Crutcher's talks)

Magnetic Flux Problem

Mechanism usually invoked to remove the magnetic flux excess:

Ambipolar diffusion (AD) of neutral gas through charged magnetized gas:

has been challenged by observations (Crutcher et al. 2008) and numerical simulations (Shu et al. 2006; Krasnopolsky et al. 2010, 2011; Li et al. 2011, Hennebelle et al); (also McKee's and Crutcher's talks)

MHD turbulent diffusion: new scenario

In presence of turbulence: field lines reconnect fast (LV99) and magnetic flux transport becomes efficient (Lazarian 2005; tested by Santos-Lima et al. 2010, 2012, 2013; de Gouveia Dal Pino, et al 2012; Leao et al. 2012)

$$\begin{aligned} \eta_{\mathsf{t}} &\sim l_{\mathrm{inj}} v_{\mathrm{turb}} & \text{if } v_{\mathrm{turb}} \geq v_{A} \\ \eta_{\mathsf{t}} &\sim l_{\mathrm{inj}} v_{\mathrm{turb}} \left(\frac{v_{\mathrm{turb}}}{v_{A}}\right)^{3} & \text{if } v_{\mathrm{turb}} < v_{A} \end{aligned}$$

Lazarian 2005, 2012 Santos-Lima et al. 2010 Eyink et al. 2011

Reconnection Diffusion in clouds

Embedded magnetic flux should be partially removed from denser to less dense regions by turbulent magnetic reconnection diffusion

Allow cloud clump collapse!

Testing reconnection diffusion in gravitating clouds: 3D MHD simulations

$$\begin{split} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) &= 0\\ \rho \left(\frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla \right) \mathbf{u} &= -c_s^2 \nabla \rho + (\nabla \times \mathbf{B}) \times \mathbf{B} - \rho \nabla \Psi + \mathbf{f}\\ \frac{\partial \mathbf{B}}{\partial t} &= \nabla \times (\mathbf{u} \times \mathbf{B}) + \eta_{\text{Ohm}} \nabla^2 \mathbf{B} \end{split}$$

- 2nd order shock capturing Godunov scheme with HLL solver (Kowal et al. 2007, Santos-Lima et al. 2010)

- f: isotropic, non-helical, solenoidal, delta correlated in time random force term (responsible for injection of turbulence)

- $\eta_{Ohm} = 0$

Magnetic Field diffusion in gravitating clouds: 3D MHD simulaitons

Magnetic field diffusion in gravitating clouds: 3D simulations

- Removal of magnetic flux from the central regions (strong-gravity);
- Gas inflow into the central region;
- Reduction of the flux-to-mass ratio in the central region.

(Santos-Lima et al., ApJ, 2010)

Formation of supercritical cores by turbulent reconnection flux transport

- Self-gravitating gas
- Spherical symmetry central potential (~1/r²)
- One fluid model
- Periodic boundary conditions
- Isothermal eq. of state
- Starting out-of-equilibrium
- Injection of ~transonic and sub/trans-Alfvénic turbulence
- Subcritical clouds

Self-Gravitating collapsing clouds

Self-gravitating gas + central spherical potential (~1/r²)

Leão, de GDP, Santos-Lima, Lazarian, Kowal 2012

Self-Gravitating colapsing clouds

Self-gravitating gas + central spherical potential (~1/r²)Non-turbulentTurbulent

Subcritical coreSupercritical core $\beta=3, n=100 \text{ cm}^{-3}$ t=100 MyrLeão et al. 2013

Self-Gravitating collapsing clouds

Larger self-gravity (density) the larger the magnetic transport

Leão et al. 2012

Resistivity Effects

To estimate the turbulent resistivity we perform models with strong resistivity.

$$\eta_{turb}$$
 ~ 10^{20-22} cm²/s

Estimate: $\eta_{ohm} \sim 10^9 \text{ cm}^2/\text{s}$ $\eta_{num} \sim 10^{19-20} \text{ cm}^2/\text{s}$ $\eta_{AD} \sim 10^{15} \text{ cm}^2/\text{s}$

Leão et al. 2012

Comparison with observations

Observed mass-tomagnetic flux ratio in cloud cores (Troland & Crutcher 2008; Crutcher et al. 2009, 2010;):

Cores built up in our models by turbulent reconnection diffusion

$$\mu_{crit} = 0.45 - 1.15$$

$$\mu_{crit} = 0.15 - 5.25$$

Our built up cores have mass-to-magnetic flux ratio between cloud core and envelope consistent with observations:

$$R' = (M_c/\Phi_c)/(M_{c+e}/\Phi_{c+e})$$
 <1

Comparison with observations

 Simulations versus observed cores by Crutcher et al. (2009, 2010)

• From 12 initially subcritical clumps -> 6 form critical/supercritical

HI, OH, and CN Zeeman measurements of the magnitude of B_{los} versus n_{H} in cloud clumps (from Crutcher et al. 2010).

@ 100 AU scales: evidence of rotationally supported disks

~100 AU

~10 pc, 10² - 10³ cm⁻³

< 1pc, 10⁴—10⁶ cm⁻³ ~10 micro-G

Supercritical core collapse -> rotationally supported disk?

Ideal MHD theory:

Magnetic fields of cloud cores suppress formation of rotationally supported disks (Allen et al. 2003; Galli et al. 2006; Li et al. 2011):

magnetic braking

@100 AU scales: formation of rotationally supported disks?

t=0

3D IDEAL MHD simulations:

Starting collapsing supercritical, rotating core

Fails to form Keplerian disk aroundprotostar (Santos-Lima, deGDP, Lazarian ApJ 2012)

-> magnetic fields transport angular momentum to outside of the disk

t = 30,000 yr

Formation of Keplerian disk by turbulent reconnection MF removal

IDEAL MHD

MHD+TURBULENCE

Reconnection diffusion removes MF excess

t=30,000 yr

Santos-Lima, de Gouveia Dal Pino, Lazarian, ApJ 2012

Formation of Keplerian disk due to turbulent reconnection MF removal

 \log_{10} density (g cm⁻³)

Santos-Lima, de Gouveia Dal Pino, Lazarian, ApJ 2012

Disk rotation velocity

Santos-Lima, de Gouveia Dal Pino, Lazarian 2012, 2013

Is magnetic flux loss necessary to stop magnetic braking or not?

B-Flux Transport in SF Summary

- B-flux removal from collapsing clouds and cores: successfully accomplished with turbulent reconnection diffusion - TRD (no need of AD)
- **TRD** can play essential role in the removal of B-flux in **different phases of star-formation** and make molecular clouds - subcritical -> supercritical
- In a large tested sample of clouds: few develop critical or supercritical cores, but with R´<1 -> consistent with obs.
- TRD can transport B-flux excess and allow formation of rotationally supported accretion disks

Thank you

Formation of Keplerian disk by turbulent reconnection MF removal

Disk rotation velocity

Santos-Lima, de Gouveia Dal Pino, Lazarian 2012