Magnetically Controlled Flows for Hot Jupiter Winds and T Tauri Disk Accretion Fred C. Adams, U. Michigan Magnetic Fields in the Universe W Playa Del Carmen, February 2013

Observations

- Two Hot Jupiter systems are observed(inferred) to have significant outflows from the planetary surface
- T Tauri star/disks systems observed to have Octupole and Dipole Magnetic Fields, and support Transonic Flow from the Disk and onto Star

THESE PHENOMENA ARE CONTROLLED BY MAGNETIC FIELDS

Magnetically Controlled Outflows from Hot Jupiters

Vidal-Madjar et al. 2008 ApJ

Hot Jupiters can Evaporate

- HD209458b (Vidal-Madjar et al. 2003, 2004; Desert et al. 2008; Sing et al. 2008; Lecavelier des Etangs et al. 2008)
- HD189733b (Lecavelier des Etangs et al. 2010)

$$\frac{dM}{dt} = 10^{10} - 10^{11} g/s$$

Planetary System Parameters

Basic Regime of Operation

$$\frac{dM}{dt} = \eta \frac{\pi R_p^3 F_{UV}}{GM_p} \approx 10^{10} g \ s^{-1} \approx 10^{-4} \ M_J \ Gyr^{-1}$$
$$\frac{B^2}{8\pi\rho v^2} \approx 10^4 - 10^6 \ (magnetically - controlled)$$
$$\frac{\omega_C}{\Gamma} = \frac{qB}{cmnov} \approx 10^4 \ (well - coupled)$$
$$\frac{B_\perp}{B} = O\left(\frac{8\pi\rho v^2}{B^2}\right) < 10^{-4} \ (current - free)$$

TWO COUPLED PROBLEMS

- LAUNCH of the outflow from planet
- PROPAGATION of the outflow in the joint environment of star and planet, including gravity, stellar wind, stellar magnetic field
- Matched asymptotics: Outer limit of the inner problem (launch of wind) provides the inner boundary condition for the outer problem (propagation of wind)

This Work Focuses on Launch of the Wind

Construct Coordinate Systems that follow Magnetic Field Lines

, = const

The Coordinate System

$$\vec{B} = B_p \Big[\xi^{-3} \Big(3\cos\theta \ \hat{r} - \hat{z} \Big) \Big] + B_* (R_* / \varpi)^3 \hat{z}$$

$$p = \Big(\beta \xi - \xi^{-2} \Big) \cos\theta \qquad q = \Big(\beta \xi^2 + 2/\xi \Big)^{1/2} \sin\theta$$
where $\beta = (B_* R_*^3 / \varpi^3) / B_p \approx 10^{-3}$ and $\xi = r/R_*$
 $\nabla p = f(\xi) \cos\theta \ \hat{r} - g(\xi) \sin\theta \ \hat{\theta}$
 $\nabla q = \Big[g(\xi) \sin\theta \ \hat{r} + f(\xi) \cos\theta \ \hat{\theta} \Big] g^{-1/2}(\xi)$
where $f = \beta + 2\xi^{-3}$ and $g = \beta - \xi^{-3}$

Magnetic Field Configuration

Magnetic field lines are lines of constant coordinate q. The coordinate p measures distance along field lines. Field lines are open near planetary pole and are closed near the equator. Fraction of open field lines:

$$f = 1 - \left[1 - \frac{3\beta^{1/3}}{2+\beta}\right]^{1/2}$$

Equations of Motion
$$u = \frac{v}{a_s} \quad \alpha = \frac{\rho}{\rho_1} \quad \psi = \frac{\Psi}{a_s^2} \stackrel{b}{\Rightarrow} \frac{b}{\xi} \quad b \equiv \frac{GM_P}{R_P a_s^2}$$

Steady-state flow along field-line direction: Fluid fields are functions of coordinate p only.

$$\alpha \frac{\partial u}{\partial p} + u \frac{\partial \alpha}{\partial p} = -\frac{\alpha u}{h_q h_{\phi}} \frac{\partial}{\partial p} \left(h_q h_{\phi}\right)$$
$$u \frac{\partial u}{\partial p} + \frac{1}{\alpha} \frac{\partial \alpha}{\partial p} = -\frac{\partial \psi}{\partial p} = -\frac{\partial \psi}{\partial \xi} \frac{\partial \xi}{\partial p}$$

Two parameters specify the dimensionless problem

$$b = \frac{GM_P}{R_P a_S^2} \approx 10$$
$$\beta = \frac{B_* (R_* / \varpi)^3}{B_P} \approx 0.001$$

$$\frac{b}{3} = \frac{2f^2 - (g^2/f + 2g + 2f)q^2/\xi^2}{f^3\xi^2 + (g^2 - f^2)q^2}$$
Sonic point
$$\lambda = qH_s^{-1/2} \exp\left[\frac{\lambda^2 H_1}{2q^2} + \frac{b}{\xi_s} - b - \frac{1}{2}\right]$$
Continuity eq.
$$f = \beta + 2\xi^{-2}, \ g = \beta - \xi^{-3}, \ and$$

$$H = f^2 \cos^2 \theta + g^2 \sin^2 \theta, \ \sin^2 \theta = q^2/(\beta\xi^2 + 2/\xi)$$

Sonic Surface

Fluid Field Solutions

Mass Outflow Rates $\beta = (B_* R_*^3 / \varpi^3) / B_P$ dm $\approx A_0 b^3 \exp[-b] \beta^{1/3}$ dm/dt dt where $A_0 \approx 4.8 \pm 0.13$ $b = GM_{P} / a_{S}^{2}R_{P}$ 0.01 0.0001 0.001 0.1 β

Physical Outflow Rate vs Flux

Observational Implications

Implication/Prediction

The Extreme Regime

In systems where the stellar outflow and the stellar magnetic field are both sufficiently strong, the Planet can Gain Mass from the Star

Summary 1.0

- Planetary outflows magnetically controlled
- Outflow rates are moderately *lower*
- Outflow geometry markedly different:
 Open field lines from polar regions
 Closed field lines from equatorial regions
- In extreme regime with strong stellar outflow the planet could gain mass from the star
- Outflow rates sensitive to planetary mass: $\dot{m} \propto b^3 \exp[-b] \beta^{1/3}, \quad b = GM_P / (a_S^2 R_P)$

(F. C. Adams, 2011, ApJ, 730, 27)

Magnetically Controlled Accretion Flows onto TTStars

- Most material that ends up in a forming star is processed through the disk; final accretion flow occurs via magnetic field
- T Tauri star/disks systems observed to have Octupole and Dipole Magnetic Fields, and support Transonic Flow onto Star
- Want to understand the sonic transition for magnetically controlled flows in general

(F. Adams & S. Gregory, 2012, ApJ, 744, 55)

Basic Regime of Operation

$$\frac{dM}{dt} \approx 10^{-7} - 10^{-8} M_{sun} yr^{-1}$$

$$\frac{B^2}{8\pi\rho v^2} \approx 350 - 3000 \ (magnetically - controlled)$$

$$\frac{\omega_C}{\Gamma} = \frac{qB}{cmnov} \approx 10^4 - 10^5 \ (well - coupled)$$

$$\frac{B_\perp}{B} = O(8\pi\rho v^2/B^2) < 10^{-3} \ (current - free)$$

Equations of Motion

Steady-state flow, polytropic equation of state:

$$\nabla \cdot \left(\rho \ \vec{u}\right) = 0 \qquad P = K \ \rho^{1+1/n}$$
$$\vec{u} \cdot \nabla \vec{u} + \nabla \Psi + \frac{1}{\rho} \nabla P + \vec{\Omega} \times \left(\vec{\Omega} \times \vec{r}\right) = 0$$
$$\vec{B} = \kappa \ \rho \ \vec{u} \qquad where \qquad \kappa = const$$

το λ ΜλΝ WITH λ ΗλΜΜΕR, ενεβυτηίνς looks Like λ Nλil

Dimensionless Equations of Motion

$$\xi = \frac{r}{R_*}, \quad u = \frac{|\vec{u}|}{a_S}, \quad \alpha = \frac{\rho}{\rho_1}, \quad \psi = \frac{\Psi}{a_S^2}, \quad b = \frac{GM_P}{R_*a_S^2}, \quad \omega = \left(\frac{\Omega R_*}{a_S}\right)^2$$

Steady-state flow along field-line direction, Fluid fields are functions of coordinate p only:

$$\alpha \frac{\partial u}{\partial p} + u \frac{\partial \alpha}{\partial p} = -\frac{\alpha u}{h_q h_\phi} \frac{\partial}{\partial p} \left(h_q h_\phi\right)$$
$$u \frac{\partial u}{\partial p} + \frac{\alpha^{1/n}}{\alpha} \frac{\partial \alpha}{\partial p} - \omega \xi \sin \theta |\nabla p|^{-1} (\hat{x} \cdot \hat{p}) = -\frac{\partial \psi}{\partial p}$$

Integrated Equations of Motion

$$\alpha \ u \ h_q h_{\phi} = \lambda \quad (4\pi\rho v r^2 = dM/dt)$$

$$\frac{1}{2} u^2 + n\alpha^{1/n} + \psi - \omega \ I = E$$

$$I = \int \xi \sin\theta \ |\nabla p|^{-1} (\hat{x} \cdot \hat{p}) \ dp$$

$$\lambda = mass \ accretion \ rate$$

$$E = energy$$

Sonic Transition Condition

$$\alpha^{1/n} \frac{Y}{\xi} + \omega \Lambda = \frac{b}{\xi^2}$$
$$Y(\xi, \theta) = \frac{\xi}{h_p} \frac{\partial h_p}{\partial \xi} \quad (where \ h_p = h_q h_{\phi})$$
$$\Lambda(\xi, \theta) = \xi \sin \theta \left(\frac{\partial p}{\partial \xi}\right)^{-1} (\hat{x} \cdot \nabla p)$$

REDUCE TO OLD/KNOWN RESULT:

$$\alpha^{1/n} \frac{Y}{\xi} + \omega \Lambda = \frac{b}{\xi^2} \rightarrow \xi_s = \frac{b}{2}$$

Shu (1992) Gas Dynamics, p. 346:
 $n \rightarrow \infty, \omega \rightarrow 0, Y \rightarrow 2 \Rightarrow 2 = \frac{b}{\xi}$

Score Card

b and ω : system parameters $(n \rightarrow \infty)$

 λ and E: conserved quantities

 $Y(\xi,\theta)$ and $\Lambda(\xi,\theta)$: functions that specify magnetic field geometry field lines $\Rightarrow q = const \Rightarrow \theta = F(\xi)$

Dipole Coordinate System

$$\vec{B} = B_0 \Big[\xi^{-3} \big(3\cos\theta \ \hat{r} - \hat{z} \big) \Big] \quad \text{where} \quad \xi = r/R_*$$

$$p = -\xi^{-2}\cos\theta \quad \text{and} \quad q = \xi^{-1}\sin^2\theta$$

$$\nabla p = 2\xi^{-3}\cos\theta \ \hat{r} + \xi^{-3}\sin\theta \ \hat{\theta}$$

$$\nabla q = -\xi^{-2}\sin^2\theta \ \hat{r} + 2\xi^{-2}\cos\theta\sin\theta \ \hat{\theta}$$

$$\nabla p \cdot \nabla q = 0$$

$$h_p = \xi^3 \Big[4\cos^2\theta + \sin^2\theta \Big]^{-1/2}$$

$$h_p = \frac{\xi^2}{\sin\theta} \Big[4\cos^2\theta + \sin^2\theta \Big]^{-1/2} \qquad \left(h_{\phi} = \xi\sin\theta\right)$$

Dipole Ancillary Functions

For Coordinate System that follows Dipole Magnetic Field Lines:

$$Y = Y(\xi) = \frac{3}{2} \frac{8 - 5q\xi}{4 - 3q\xi}$$
$$\Lambda = \Lambda(\xi) = \frac{3}{2}q \xi^2$$

along field line labeled by the coordinate q

Dipole Solutions (Isothermal)

Accretion flow follows magnetic field lines, which are lines of constant coordinate q.

$$3\xi \frac{8-5q\xi}{4-3q\xi} = 2b-3 \ \omega \ q \ \xi^4 \qquad \text{(Sonic Point Condition)}$$
$$\log \lambda - \frac{1}{2} \lambda^2 = 3\log \xi_s - \frac{1}{2}\log(4-3\xi_s) - \frac{1}{2}$$
$$\text{(Mass Accretion Rate)} + b \left(\frac{1}{\xi_s} + \frac{1}{2}\xi_s^2 - \frac{3}{2}\right)$$

Dipole Accretion Solution

dipole fields
isothermal flow
$$\xi_d = 10$$

 $\xi_* = 1$
 $b = 500$
 $b = 1000 (dots)$

General Constraint on Steady Polytropic Transonic Accretion Flow

Observations show that flow must be *transonic*. *Steady-state* accretion solutions that pass *through the sonic point* and approach *free-fall speed* near the star must satisfy the constraint:

$$n > \ell + 3/2$$

$$\rightarrow n > 9/2$$
 (octupole)

Steady flow must be nearly isothermal for fields with higher order multipoles.

Dipole + Octupole Configuration

Dipole + Octupole Coordinate System

$$\vec{B} = B_{dip} \xi^{-3} \left(2\cos\theta \ \hat{r} + \sin\theta \ \hat{\theta} \right) + \frac{1}{2} B_{oct} \xi^{-5} \left[\left(5\cos^2\theta - 3 \right) \cos\theta \ \hat{r} + \frac{3}{4} \left(5\cos^2\theta - 1 \right) \sin\theta \ \hat{\theta} \right]$$

$$p = -\frac{\Gamma}{4}\xi^{-4}(5\cos^2\theta - 3)\cos\theta - \xi^{-2}\cos\theta$$
$$q = \frac{\Gamma}{4}\xi^{-3}(5\cos^2\theta - 1)\sin^2\theta + \xi^{-1}\sin^2\theta$$
$$where \quad \Gamma \equiv \frac{B_{oct}}{B_{dip}}$$

Dipole + Octupole Coordinate System

Dipole + Octupole Scale Factors

$$h_{p} = \xi^{5} [f^{2} \cos^{2} \theta + g^{2} \sin^{2} \theta]^{-1/2}$$

$$h_{q} = \xi^{4} (\sin \theta)^{-1} [f^{2} \cos^{2} \theta + g^{2} \sin^{2} \theta]^{-1/2}$$
where $f = \Gamma (5 \cos^{2} \theta - 3) + 2\xi^{2}$
and $g = (3/4)\Gamma (5 \cos^{2} \theta - 1) + \xi^{2}$

$$\sin^2 \theta = \frac{2}{5\Gamma} \left\{ (\xi^2 + \Gamma) - \left[(\xi^2 + \Gamma)^2 - 5\Gamma q \xi^3 \right]^{1/2} \right\}$$

so that $f, g, h_p, h_q = Function(\xi only)$

Ancillary Functions for Dipole + Octupole Configuration

$$\begin{split} \Lambda(\xi) &= \frac{3\xi}{5\Gamma} \left\{ 1 + \frac{g(\xi)}{f(\xi)} \right\} \left\{ (\xi^2 + \Gamma) - \left[(\xi^2 + \Gamma)^2 - 5\Gamma q \xi^3 \right]^{1/2} \right\} \\ Y(\xi) &= 5 - \left[f^2 + (g^2 - f^2) \frac{1}{5\Gamma} (2\xi^2 + 2\Gamma - f) \right]^{-1} \frac{\xi}{5\Gamma} \times \\ \left\{ 5\Gamma f \ f_{\xi} + \left[g \left(\frac{3f_{\xi}}{4} - \xi \right) - f \ f_{\xi} \right] (2\xi^2 + 2\Gamma - f) + (g^2 - f^2) \left(2\xi - \frac{f_{\xi}}{2} \right) \right\} \end{split}$$

Index of Divergence Operator (Dipole + Octupole)

Accretion Solution (Dip+Oct)

isothermal flow *octupole* $\Gamma = 10$ $\xi_{d} = 10$ $\xi_{*} = 1$ b = 500dots = dipole solution dashes = full solution

Dimensionless Accretion Rate

Dipole + Split-Monopole

$$p = -\xi^{-2} \cos \theta - \beta \xi^{-1}$$

$$q = \xi^{-1} \sin^2 \theta - \beta \cos \theta$$

$$where \quad \beta = 2B_{rad} / B_{dip}$$

È

Summary 2.0

- Construction of coordinate systems (p,q)
- Generalizes to many astrophysical problems
- Can find sonic points and dimensionless mass accretion rates analytically
- Dipole + Octupole system: flow density (10x)larger, hot spot has higher temperature
- Magnetic truncation radius changes
- General constraint on steady transonic flow:

 $n > \ell + 3/2 \implies nearly isothermal$

(Adams & Gregory, 2012, ApJ, 744, 55)

Dragons

 This use of coordinate systems in this context only works for potential fields (no currents in the flow region) The formalism has been developed for two-dimensional systems; can work for three-dimensional systems in principal, but complicated in practice • Treatment (thus far) limited to steadystate (time independent) magnetic fields: magnetostatics not MHD

Planet in Stellar Split-Monopole Field

Parker Spiral in Equatorial Plane

$$p = A \log \left(1 - \frac{1}{\xi} \right) + \phi$$

$$q = \xi - 1 - \log \xi - A\phi$$

$$A = V_{wind} / (\omega R_*) \approx 100$$
(A sets shape of spiral)

