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Abstract

Nowadays, Cosmological Perturbation Theory is a standard
and useful tool in theoretical cosmology [1]. In this work,
we compare the 1+3 covariant formalism in perturbation
theory (Ellis) [2] to the gauge invariant approach (Bruni et.
al.)[3], and we show the equivalence of these formalisms
to fix the choice of the perturbed variables (gauge choice)
in magnetogenesis. We analyze the evolution of primordial
magnetic fields through perturbation theory and we discuss
the similarities and differences between these two approa-
ches. We get the Maxwell’s equations and show a cosmic
dynamo like equation written in Poisson gauge, computing
the evolution of primordial magnetic fields. Finally, pros-
pects around these formalisms in the study of magnetoge-
nesis are discussed.

The gauge problem in perturbation theory

Cosmological perturbation theory help us to find appro-
ximated solutions of the Einstein field equations through
small desviations from an exact solution [3]. The gauge in-
variant formalism is developed into two space-times, one
is the real space-time (M, gαβ) which describes the pertur-
bed universe and the other one is the background space-
time (M0, g

(0)
αβ) which is an idealization and is taken as re-

ference to generate the real space-time. A mapping between
these space-times called gauge choice given by a function
X : M0(p) −→ M(p̄) for any point p ∈ M0 and p̄ ∈ M,

which generates a pull-back
X ∗ : M

T ∗(p)
−→ M0

T ∗(p)
, thus,

points on the real and background space-time can be com-
pared through of X .

Figure 1: Gauge transformation.
General covariance states that there is no preferred coordi-
nate system in nature and it introduce a gauge in perturba-
tion theory. This gauge is an unphysical degree of freedom
and we have to fix the gauge or to extract some invariant
quantities to have physical results. Then, the perturbation
for Γ is defined as

k (p̄) = k0 (p) + δk (p) . (1)

We see that the perturbation δΓ is completely dependent
of the gauge choice because the mapping determines the
representation onM0 of Γ (p̄). However, one can also choi-
ce another correspondence Y between these space-times so
that Y : M0(q) → M(p), (p 6= q). The freedom to choo-
se different correspondences generate an arbitrariness in the
value of δΓ at any space-time point p, which is called gauge
problem.
Given a tensor field k , the relations between first and se-
cond order perturbations of k in two different gauges are

δkX − δkY = Lξ1k0, (2)

δ2kY − δ2kX = 2Lξ1
(
δkX

)
+
(
L2
ξ1

+ Lξ2
)
k0. (3)

A tensor field k is gauge-invariant to order n ≥ 1 if
Lξδ

kk = 0, for any vector field and ∀k < n. This vector
field can be splited in their time and space part

ξ(r)
µ →

(
α(r), ∂iβ

(r) + d
(r)
i

)
, (4)

here α(r) and β(r) are arbitrary scalar functions, and we have
∂id

(r)
i = 0.

The function α(r) determines the choice of time constant hy-
persurfaces, while ∂iβ(r) and d(r)

i fix the spatial coordinates
within these hypersurfaces.

Gauge invariant variables at first order

We consider the perturbations about a FLRW background,
so the metric tensor is given by :

µ = µ0 +

∞∑
r=1

1

r!
δrµ, uα =

1

a

(
δα0 +

∞∑
r=1

1

r!
vα(r)

)
(5)

g00 = −a2(τ )

(
1 + 2

∞∑
r=1

ψ(r)

r!

)
, goi = a2(τ )

∞∑
r=1

ω
(r)
i

r!

gij = a2(τ )

[[(
1− 2

∞∑
r=1

1

r!
φ(r)

)]
δij +

∞∑
r=1

1

r!
χ

(r)
ij

]
(6)

It is found the scalar and vector gauge invariant variables
at first order given by

Ψ(1) ≡ ψ(1) +

(
S ||(1)a

)′
a

, Φ(1) ≡ φ(1) +
∇2χ(1)

6
−HS ||(1),

∆(1) ≡ µ(1) +
(
µ(0)

)′ S ||(1), ∆
(1)
P ≡ P(1) +

(
P(0)

)′ S ||(1),

V i(1) ≡ ωi(1) + vi(1), (7)

with S ||(1) ≡
(
ω||(1) − (χ||(1))

′

2

)
the scalar contribution of the

shear (associated with α(1)). Using the Einstein’s equation
at first order, it is expressed the evolution of geometrical
variables φ and ψ, and the conservation’s equations entails
the evolution of energy density ∆(1)(

∆(1)
)′

+ 3H
(

∆
(1)
P + ∆(1)

)
− 3

(
Φ(1)
)′ (

P(0) + µ(0)

)
+
(
P(0) + µ(0)

)
∇2υ(1) − 3H

(
P(0) + µ(0)

)′ S ||(1)

−
((
µ(0)

)′ S ||(1)

)′
+
(
P(0) + µ(0)

)(
−1

2
∇2χ(1) + 3HS ||(1)

)′
−
(
P(0) + µ(0)

)
∇2

(
1

2
χ||(1)

)′
= 0, (8)

and peculiar velocity V(1) given by(
V (1)
i

)′
+

(
µ(0) + P(0)

)′(
µ(0) + P(0)

)V (1)
i − 4HV (1)

i + ∂iΨ
(1)

−
∂i

(
∆

(1)
P −(P(0))

′
S ||(1)
)

+∂lΠ
(1)l
(fl)i(

µ(0) + P(0)

) − ∂i
1

a

(
S ||(1)a

)′
= 0. (9)

Weakly magnetized FLRW-background

We allow the presence of a weak magnetic field into our
FLRW space-time with the property B2

(0) � µ(0) and must

be sufficiently random to satisface 〈Bi〉 = 0 and
〈
B2

(0)

〉
6= 0

to ensure that symmetries and the evolution of the back-
ground remain unaffected (we assume that at zero order the
magnetic field has been generated by some random process
which is statistically homogeneous so that B2

(0) just time
depending and 〈..〉 denotes the expectation value) [4]. We
work under MHD approximation, thus, in large scales the
plasma is globally neutral, charge density is neglected and
the electric field with the current should be zero, thus the
only zero order magnetic variable is B2

(0). At first order it is
obtained a gauge invariant term which describes the mag-
netic energy density

∆(1)
mag ≡ B2

(1) +
(
B2

(0)

)′
α(1). (10)

Another gauge invariant variables are the 3-current J , the
charge density % and the electric and magnetic fields, be-
cause they vanish in the background.
At first order, the electric field and the current become non-
zero and assuming the ohmic current is not neglected, we
find the Ohm’s law

J
(1)
i = σ

[
E

(1)
i +

(
V (1) ×B(0)

)
i

]
. (11)

The perturbed equations for the metric and electromagnetic
fields are given by

∂iE
i
(1) = a%(1), εilk∂lB

(1)
k =

(
a2Ei

(1)

)′
+ a3J i(1),

∂iB
(1)
i = 0,

(
a2B

(1)
k

)′
+ a2εijk∂iE

(1)
j = 0. (12)

Now using eq.(12) together with the Ohm’s law, we get a
cosmic dynamo like equation which describes the evolution
of density magnetic field at first order in the Poisson gauge

d∆
(2)
(mag)

dt
+ 4H∆

(2)
(mag) +

2

3
∆

(1)
(mag)∂lV

l
(1) + 2η

[
−B(1) · ∇2B(1)

−B(1)
k ·

(
∇×

(
dE(1)

dt
+ 2HE(1)

))k
−

∆
(1)
(mag)

2
∇2
(

Ψ(1) − 3Φ(1)
)

+Bk
(1)

(
B(0) · ∇

)
∂k

(
Ψ(1) − 3Φ(1)

)]
= −2Π

(1)
ij(em)σ

ij
(1), (13)

where we use the Lagrangian coordinates which are como-
ving with the local Hubble flow and magnetic field lines

are frozen into the fluid (
d

dt
=

∂

∂t
+ V i(1)∂i), σ and Π are

the shear and stress Maxwell tensor respectively. Thus, the
perturbations in the space-time play an important role in
the evolution of primordial magnetic fields. In the case of a
homogeneous collapse, B ∼ V−2

3 there is an amplification
of the magnetic field in places where gravitational collapse
take place. In eq.(13), the energy density magnetic field at
second order transforms as

∆
(2)
(mag) = B2

(2) + α(1)

(
B2′′

(0)α(1) + B2′
(0)α

′
(1) + 2B2′

(1)

)
+ξi(1)

(
B2′

(0)∂iα
(1) + 2∂iB

2
(1)

)
+ B2′

(0)α(2). (14)

Finally, we relate quantities in the 1+3 covariant formalism
and in the invariant approach showed above. In the cova-
riant formalism quantities are projected down onto spatial
hαβ, relative to the 4-velocity of the fluid. This suggests that
the quantities constructed in this way are closely related to
quantities gauge invariant using the comoving gauge [4].
The comoving magnetic density gradient is defined as

Bµ ≡
a

B2
hλµ∇λB

2, with hµν ≡ gµν + uµuν . (15)

Now, we substitute the 4-velocity at first order found in gau-
ge invariant approach uµ = a

(
−(1 + ψ), ∂i(v

‖ + ω‖)
)

, we
obtain the following relation

hλµ∇λB
2 = ∂i

(
B2

(1) + B2′
(0)

(
v‖ + ω‖

))
, (16)

if the comoving gauge is used (which introduces a family
of world lines orthogonal to the 3-D spatial sections) given
by α→ v‖+ω‖ in eq. (10), it is derived a similar to expres-
sion as it was found in 1+3 covariant formalism, it implies
an equivalence in both formalisms. Now, if we study this
equivalence at second order, we must impose u(2)

i = 0 to
provide a covariant description. In this case the 4-velocity
at second order is

u
(2)
i

a
=

[
(v

(2)
i + ω

(2)
i )

2
− 2v

(1)
i φ

(1) − ω(1)
i ψ(1) + vj(1)χ

(1)
ij

]
(17)

in [5] is shown vector field that determines the gauge como-
ving at second order. In this case one must take into account
that 4-velocity must be zero and choose appropriately the
3D spatial section through of β(2) and d(2)

i .
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