
1. Neutron Star Crusts

The crust is the upper layer of a neutron star (~2km) 
and consists of a highly conducting crystal lattice. 
Lorentz forces exerted by the magnetic field are 
balanced by the elastic crust and the field evolves 
through Hall effect[1].

 

2. Hall Evolution

In the Hall description the magnetic field is advected 
by the electric current which is carried by electrons. 
Ohmic diffusion for neutron star crust applications is 
much slower and is treated as a secondary effect. 
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In a system dominated by Hall drift, equilibrium 
occurs when the Hall term is equal to zero and is the 
state it  may settle after several Hall timescales. We 
solve for Hall equilibrium inside the neutron star 
crust while requiring that the field connects to an 
external vacuum dipole field.
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3. Analytical Solutions

We find Hall equilibria solving the Grad-Shafranov[2] 
equation. The fields have an overall dipole structure and 
correspond to uniform rotation of the electron fluid. 
Analytical solutions are possible for purely poloidal 
field or for mixed poloidal-toroidal fields fully confined 
in the crust and bear similarities with previously known 
MHD solutions[3,4].

4. Numerical Solutions

To avoid the essential simplifications of analytical 
solutions we numerically solve the Grad-Shafranov 
equation. The azimuthal field is constrained in closed 
tori as the external vacuum cannot support currents. The 
numerical scheme reproduces the analytical results and 
is in accordance with Hall simulations[5,6]. 
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Figure 3. The solution to equation (16) as described in section

3.1.5 for uniform electron density, which contains both poloidal

and toroidal fields confined in the star. Sections of constant
poloidal flux  are drawn which denote surfaces of constant I.
The field reaches the centre of star in case (a); and is confined in

a crust whose inner radius is 0.8r⇤.

will be determined by Ψ(rin) = 0 and a fourth from the
overall normalizat ion of the flux contained inside the star,
figure (3). This solut ion has been discussed in the context of
magnet ic bubbles (Gourgouliatos et al. 2010; Gourgouliatos
& Lyut ikov 2012) and also in the context of fossil fieldsDuez
& Mathis (2010).

We remark that in the cases where fields are confined
in a thin crust and do not reach the cent re of the star, the
inner boundary of the crust has a sheet current as the field is
pushed out of thesuper conduct ing core, such fieldswill have
a non-zero @ 

@r |rin . An other important consequence is that
the magnet ic field in the crust is st ronger by the inferred
dipole field by about an order of magnitude, providing a
large reservoir of accessible magnet ic energy in the crust .

3.2 Numerical Solutions

We have developed a relaxat ion scheme implement ing
Gauss-Seidel method for ellipt ic di�erent ial equat ions (Press
et al. 1992). We choose a vacuum solut ion for region (I), and
then we solve for the field inside regions (I I) and (I I I) ensur-
ing that the field does not have any discont inuit ies on the
boundaries. A linear dependence of I on Ψ does not allow
smooth t ransit ion, we proceed by choosing I = ↵Ψ(Ψ0�Ψ),
which is the simplest possible non-linear dependence. This
choice allows a smooth t ransit ion of I from region (I I) where
it is equal to zero to (I I I) without the need of current sheets.

In our solut ions we assume a density profile ne(r);
in the examples shown we have chosen ne = const . and
ne / (r2⇤ � r2)2. The lat ter form of ne(r) shares the impor-
tant property of the crust elect ron density profile that the
elect ron density drops by orders of magnitude as one ap-
proaches the outer edge of the crust . We solve for combina-
t ions of parameters ↵ and S1 that ensure that the dominant
field outside is a dipole. Wehave performed our solut ions for
various resolut ions ranging from 22⇥ 44 to 88⇥ 176 and we
have found consistent results, also we have chosen to solve
the problem both in grids with cylindrical and spherical co-
ordinates and no significant di�erences were found.

3.2.1 Reproduction of analytical solutions

To test the accuracy of our numerical schemewehave solved
for the field corresponding to the dipole without toroidal

a b

c d

Figure 4. Comparison of the numerical solution to the analyt-

ical solution for various combinations of crust thickness, density
profile and resolution of the numerical scheme. We plot the flux

functions  along the equator, the radius of the star (r⇤) and

the flux function on the equator at the radius of the star ( 0)
are both normalized to unity. The analytical solution for is the

red line and the corresponding numerical solution is denoted by

the red crosses, the models correspond to the respective solutions
shown at figure (2). The choices of S0 = S1 have been dictated by

the analytical solutions thus in case (a) we have chosen S0 = 15,
in (b) S0 = 70.915, in (c) S0 = 118.125 and in (d) S0 = 3389.6.

field given by equat ion (15) and the one which is fully con-
fined inside the star and is given by equat ion (16) keeping
only the ` = 1 term. We find that the numerical scheme
converges to the analyt ical solut ion, see figure (4).

3.2.2 Solutions with toroidal field

Wehavesolved numerically theequat ion including a toroidal
field in region (I I I). We find that this addit ion leads to the
enlargement of region (I I I) as opposed to a solut ion with the
same parameters with a purely poloidal field. Also the max-
imum of the flux becomes higher as the system requires a
higher poloidal field to support theext ra toroidal field, this is
a result that hasbeen found in other studieswherea toroidal
field hasbeen included (Lynden-Bell & Boily 1994; Gourgou-
liatos 2008; Beloborodov 2009; Gourgouliatos & Vlahakis
2010). Both these e�ects are visualised in figure (5) where
the numerical solut ion shows a higher maximum and also
is greater than Ψ0 for a more extended area. In general the
numerical solut ion with a const rained toroidal field in region
(I I I) does not lead to substant ially di�erent poloidal mag-
net ic field and we do not observe discont inuit ies of the fields
on the surface, figure(6).

We remark that the numerical scheme is not guaranteed
to converge to a solut ion for any choice of a toroidal field,
for instance, choices of st rong toroidal fluxes or large values
of S1 lead to diverging results. This divergence is because
of numerical limitat ions of the Gauss-Seidel scheme used
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Analytical solutions for a pure dipole 
field and mixed toroidal and poloidal 
field fully confined inside the star.

Hall equilibria 5

a b

Figure 3. The solution to equation (16) as described in section

3.1.5 for uniform electron density, which contains both poloidal

and toroidal fields confined in the star. Sections of constant
poloidal flux  are drawn which denote surfaces of constant I.
The field reaches the centre of star in case (a); and is confined in

a crust whose inner radius is 0.8r⇤.

will be determined by Ψ(rin) = 0 and a fourth from the
overall normalizat ion of the flux contained inside the star,
figure (3). This solut ion has been discussed in the context of
magnet ic bubbles (Gourgouliatos et al. 2010; Gourgouliatos
& Lyut ikov 2012) and also in the context of fossil fieldsDuez
& Mathis (2010).

We remark that in the cases where fields are confined
in a thin crust and do not reach the cent re of the star, the
inner boundary of the crust has a sheet current as the field is
pushed out of thesuper conduct ing core, such fieldswill have
a non-zero @ 

@r |rin . An other important consequence is that
the magnet ic field in the crust is st ronger by the inferred
dipole field by about an order of magnitude, providing a
large reservoir of accessible magnet ic energy in the crust .

3.2 Numerical Solutions

We have developed a relaxat ion scheme implement ing
Gauss-Seidel method for ellipt ic di�erent ial equat ions (Press
et al. 1992). We choose a vacuum solut ion for region (I), and
then we solve for the field inside regions (I I) and (I I I) ensur-
ing that the field does not have any discont inuit ies on the
boundaries. A linear dependence of I on Ψ does not allow
smooth t ransit ion, we proceed by choosing I = ↵Ψ(Ψ0�Ψ),
which is the simplest possible non-linear dependence. This
choice allows a smooth t ransit ion of I from region (I I) where
it is equal to zero to (I I I) without the need of current sheets.

In our solut ions we assume a density profile ne(r);
in the examples shown we have chosen ne = const . and
ne / (r2⇤ � r2)2. The lat ter form of ne(r) shares the impor-
tant property of the crust elect ron density profile that the
elect ron density drops by orders of magnitude as one ap-
proaches the outer edge of the crust . We solve for combina-
t ions of parameters ↵ and S1 that ensure that the dominant
field outside is a dipole. Wehave performed our solut ions for
various resolut ions ranging from 22⇥ 44 to 88⇥ 176 and we
have found consistent results, also we have chosen to solve
the problem both in grids with cylindrical and spherical co-
ordinates and no significant di�erences were found.

3.2.1 Reproduction of analytical solutions

To test the accuracy of our numerical schemewehave solved
for the field corresponding to the dipole without toroidal

a b

c d

Figure 4. Comparison of the numerical solution to the analyt-

ical solution for various combinations of crust thickness, density
profile and resolution of the numerical scheme. We plot the flux

functions  along the equator, the radius of the star (r⇤) and

the flux function on the equator at the radius of the star ( 0)
are both normalized to unity. The analytical solution for is the

red line and the corresponding numerical solution is denoted by

the red crosses, the models correspond to the respective solutions
shown at figure (2). The choices of S0 = S1 have been dictated by

the analytical solutions thus in case (a) we have chosen S0 = 15,
in (b) S0 = 70.915, in (c) S0 = 118.125 and in (d) S0 = 3389.6.

field given by equat ion (15) and the one which is fully con-
fined inside the star and is given by equat ion (16) keeping
only the ` = 1 term. We find that the numerical scheme
converges to the analyt ical solut ion, see figure (4).

3.2.2 Solutions with toroidal field

Wehavesolved numerically theequat ion including a toroidal
field in region (I I I). We find that this addit ion leads to the
enlargement of region (I I I) as opposed to a solut ion with the
same parameters with a purely poloidal field. Also the max-
imum of the flux becomes higher as the system requires a
higher poloidal field to support theext ra toroidal field, this is
a result that hasbeen found in other studieswherea toroidal
field hasbeen included (Lynden-Bell & Boily 1994; Gourgou-
liatos 2008; Beloborodov 2009; Gourgouliatos & Vlahakis
2010). Both these e�ects are visualised in figure (5) where
the numerical solut ion shows a higher maximum and also
is greater than Ψ0 for a more extended area. In general the
numerical solut ion with a const rained toroidal field in region
(I I I) does not lead to substant ially di�erent poloidal mag-
net ic field and we do not observe discont inuit ies of the fields
on the surface, figure(6).

We remark that the numerical scheme is not guaranteed
to converge to a solut ion for any choice of a toroidal field,
for instance, choices of st rong toroidal fluxes or large values
of S1 lead to diverging results. This divergence is because
of numerical limitat ions of the Gauss-Seidel scheme used

c� - RAS, MNRAS 000, 1–10

Comparison of the poloidal flux found 
analytically (red solid line) and the 
numerical solution (blue crosses). 6 K.N. Gourgouliatos, A. Cumming

a b

c d

Figure 5. Comparison of the analytical purely poloidal field flux

function with the numerical solutions containing toroidal field.
The red lines is  along the equator derived for the analytical

solutions as shown in figure (4), the blue crosses are the numer-

ical solutions for the poloidal flux after a toroidal field has been
included in Region (III) as described in section . The solutions

with toroidal field lead to larger regions (III) where  >  0 as

the excessive toroidal field makes this are to expand, additionally
the require stronger poloidal fields to balance the forces exerted

by the toroidal fields and thus the maximum value of  increases
compared to the purely poloidal case. We remark that in case

(b) the expansion of region (III) and the rise of the maximum

are minimal as region (III) was already very small in the purely
poloidal case, thus there was very limited amount of toroidal flux

that could be accommodated. The choices of S0 are the same for

the respective plots in Figure (4) while now we set ↵ = 8 in cases
(a), (b) and (d), and ↵ = 2 for (c) this is because for such a strong

value of ↵ the toroidal field was becoming exceptionally strong

and the numerical scheme was not converging.

as they are more common to lower resolut ion and may be
present even in cases where an analyt ical solut ion exists.

3.3 Electron velocity profile

Knowing the form of themagnet ic field it ispossible to evalu-
ate the currents flowing in the crust . In the Hall descript ion
the elect ric current is due to the mot ion of the elect rons,
thus we can solve for the velocity profile. Taking the curl of
equat ion (1), in regions (I I) and (I I I) the elect ric current is

j = c

4⇡ (rI ⇥r� + ∆ ⇤Ψr�) . (18)

Subst itut ing from equat ion (13) for the Grad-Shafranov op-
erator, and given that the current is due to the elect ron
mot ion, we obtain
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Figure 6. Examples of the numerical solution. (a) The initial

condition used in the numerical scheme, the field outside of the
neutron star is taken to be a dipole and  is set to zero inside

the star. (b) Poloidal field lines corresponding to the numerical

solution shown in figure (5c), the resolution is 44 ⇥ 88, about
104 iterations were su�cient for convergence. (c) The solution

corresponding to S0 = 0. The field inside the star is a uniform

field parallel to the axis, the discontinuities on the surface of the
star are obvious, leading to sheet currents. This solution is not

acceptable under the requirements we have set.
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We find that the velocity of the elect ron fluid has a compo-
nent which is parallel to the magnet ic field (force-free) and
a second component related to the scalar funct ion S0. The
angular velocity of the elect ron fluid after having subt racted
any mot ion along the field lines is given by

Ωe =
c

4⇡eS
0 . (21)

In the examples solved, we took S0 to be constant every-
where inside the star, with a value equal to that we found
in the purely poloidal analyt ical solut ion. This choice led to
cont inuous fields along the surface of the star. In cont rast ,
we experimented with other choices of S0 and we found that
for values that di�ered much (⇠ 10%) from the analyt ical
value, there were visible kinks of the field lines (figure 6.c),
indicat ing the presence of surface currents.

To further test the robustness of this result of constant
S0, wenext modified the numerical schemeso that it chooses
the appropriate value of S0 from the boundary condit ions
in a process similar to the simultaneous relaxat ion solut ion
used in the solut ion for pulsar magnetospheres of Contopou-
los et al. (1999). Having chosen a dipole field as the external
solut ion, cont inuity of Ψ requires Ψ(r⇤, µ) = Ψ0(1 � µ2).
Subst itut ing into equat ion (13,I I) we find

S0 = �
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Having evaluated the value of S0 on the boundary we can
write it as a funct ion of Ψ and then proceed with the nu-
merical solut ion, iterat ing unt il convergence.

We find that for the choice of a dipole as the bound-
ary condit ion the system indeed relaxes to a solut ion with
constant S0(Ψ) corresponding to a uniformly rotat ing elec-
t ron fluid and the value is within 5% to the value found in
the analyt ical solut ion. When we chose a quadrupole field
as the boundary condit ion however, the system could not
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Abstract

We present equilibria solutions for neutron stars crusts 
containing toroidal and poloidal magnetic field. They 
correspond to Hall equilibria and are confined in the crust 
of the neutron star. Some simple cases are solved 
analytically while more complicated configurations are 
found numerically through a Gauss-Seidel elliptic partial 
differential equation solver. 

Left: Numerical solution initial condition.
Right: The system relaxes to a Hall 
equilibrium where the toroidal field is 
confined in the closed tori.

Comparison of the purely poloidal 
solution with numerical solution with 
toroidal field. 

5. Neutron Star Magnetic Evolution

The solutions presented, subject to their stability, may 
represent long term states in the magnetic evolution of 
neutron stars. Despite their similarities, they do not 
coincide with MHD equilibria, thus a phase transition 
during the formation of a neutron star from a fluid to a 
lattice state will be accompanied by magnetic activity. 
For long enough timescales Ohmic diffusion may 
become important and the neutron star shall deviate 
from Hall equilibrium.


