Following the GRB jet interaction from small to large scales

Gerardo Urrutia Center for Theoretical Physics, Warsaw, Poland gurrutia@cft.edu.pl

Fatemeh Nouri (INFN, It), Fabio De Colle (UNAM, Mex)

Agnieszka Janiuk (CFT, Poland), Héctor Olivares (UA, Portugal),

GRB + CE México, December 5th 2024

GRB jet evolution is a multi-scale problem

NS-NS merger Or **BH-NS** merger

Jet Propagation within **Post-merger outflows**

Central Engine

 $r \lesssim 10^{10} \,\mathrm{cm}$

Shell propagation in External ISM

Afterglow Emission

22S

Is the initial jet structure deleted by the interaction with environment?

Top-hat jet

PLJ structured jet

Urrutia, De Colle, Murguia-Berthier, Ramirez-Ruiz 2021

Evolution of the jet structure

The jet structure is partially preserved after the breakout

Urrutia, De Colle, Murguia-Berthier, Ramirez-Ruiz 2021

Short GRBs simulations

Methods: remapping disk wind data and jet properties from GRMHD simulations to AMR SRHD simulations

Our Connection between small and large scales

 $10^8 \,\mathrm{cm} < \mathrm{r} < 10^{11} \,\mathrm{cm}$ Large scales **Special Relativistic HD simulation**

$$(\rho u_{\mu})_{;\nu} = 0$$
$$T^{\mu}_{\nu;\mu} = 0$$
$$T^{\mu\nu} = T^{\mu\nu}_{m}$$

- Mezcal Code (De Colle 2012)
- Adaptive Mesh Refinement
- HLLC solver
- GR effects not considered

Post-merger evolution of the jet

Cartoon of GRB evolution (Stefano Ascenzi)

Small Scales

GRMHD simulations

Post-merger evolution of the jet

Intermediate $10^8 \lesssim r \lesssim 10^{11} \,\mathrm{cm}$ Scales

RMHD or **RHD** simulations

Cartoon of GRB evolution (Stefano Ascenzi)

Post NSNS merger configuration

$$M_{\rm BH} = 2.65 M_{\odot}$$

 $M_{\rm disc} = 0.10276 M_{\odot}$
 $\dot{M}_{\rm out} = 3.27 \times 10^{-2} M_{\odot} \ {\rm s}^{-1}$

Post BHNS merger configuration $M_{\rm BH} = 5.0 M_{\odot}$ $M_{\rm disc} = 0.3120 M_{\odot}$ $\dot{M}_{\rm out} = 1.49 \times 10^{-1} M_{\odot} \, {\rm s}^{-1}$

Disk wind outflows

Jet Characteristics

$$\Gamma_j = 7.2$$

 $t_j \propto M_{\rm disk} / \langle \dot{M} \rangle \sim 1.57 \, {
m s}$
 $\theta_j = 15^{\circ}$
 $L_j \approx 1.7 \times 10^{50} \, {
m erg/s}$

Jet Characteristics

$$\Gamma_j = 12$$

 $t_j \propto M_{\rm disk} / \langle \dot{M} \rangle \sim 1.07 \, {
m s}$
 $\theta_j = 15^{\circ}$
 $L_j \approx 2.2 \times 10^{50} \, {
m erg/s}$

Wind distributions at $r_{inj} \sim 2 \times 10^8$ [cm]

Results of jet interaction

Jet from NSNS merger

Jet from BHNS merger

Future distribution of the kilonova

Results of jet interaction

Jet from NSNS merger

Energy evolution (jet from NSNS)

We follow the standard afterglow estimation (Sari, Piran & Narayan 1990; Granot & Sari 2002)

- Blandford & Mckee 1976 model
- Synchrotron emission. Magnetic field amplified in the shock front.

Urrutia, De Colle, Murguia-Berthier & Ramirez-Ruiz (2021)

GRB 170817 A

GRB jet without structure

$r \gtrsim 10^{16} \,\mathrm{cm}$

Post-merger evolution of the jet

Covarruvias, De Colle & Urrutia (2023), Gill, Granot, De Colle & Urrutia (2019)

Cartoon of GRB evolution (Stefano Ascenzi)

Very Large Scales $r \gtrsim 10^{16}$ cm RHD simulations or Analytical extrapolations

Long GRBs simulations

Objetive: Follow the jet propagation from the BH horizon to the exterior of the star

Methods: remap a pre evolved massive star to AMR **GRMHD** simulations

Intermediate scales (classic methodology) The jet is imposed as a strong shock condition

• Stellar striped envelope WR (Woosley & Heger 2006) 10^{10} -— 12 TH - wind $M = 10^{-4} M_{\odot}$ Interpolation •• *r*ini 107 -104 ρ [gr/cm³] 10^{1} - 10^{-2} 10^{-5} 10^{-8} 10^{-11} - 10^{-14} 10⁸ 10^{10} 10^{11} 10⁹ 10¹² 10^{7} *r* [cm] **Initial Conditions** Size of AMR computational box

Time=0

Urrutia, De Colle, Lopez-Camara 2022

Jets initially structured

Urrutia, De Colle & Lopez-Camara 2023

3.50e+01

-5.92e+00

1.00e+00

Simulations from small scales :)

Urrutia, Janiuk & Olivares in prep

Time=0

BHAC code AMR (Port, Olivares et al. 2017; Olivares, Port, et al. 2019) 26

Three different progenitors

30

Jet variability at different regions

Energy components after breakout

33

Conclusions

• Short GRB simulations:

- We include self-consistent disk winds to large scale simulations
- After the jet interaction, the energy structure, cocoon expansion presents substantial changes with respect to usual homologous models
- The collimation of the jet is modified by the pressure balance (self-consistent with r-process)

• Long GRB simulations:

- The structure of the progenitor affects, magnetization and properties of the central engine such as disc formation
- Luminosities and accretion rates were affected and the evolution of each energy component

• Both:

• The interaction of the jet with the progenitor environment determines whether the structure is conserved from small to large scales. Therefore, simulations are necessary at least at the scales of progenitor environments

Dziękuję - Thank you! - ¡Gracias! Gerardo Urrutia gurrutia@cft.edu.pl gerardourrutia.com

NATIONAL SCIENCE CENTRE