

Photospheres in GRBs Role of radiation mediated shocks

Felix Ryde KTH Royal Institute of Technology, Stockholm

Filip Alamaa, Christoffer Lundman, Asaf Pe'er, Oscar Wistemar

Distribution of prompt emission spectral shapes

Photospheric emission in GRBs

Natural ingredient in the fireball model

Flow becomes transparent: Photospheric flash

opaque

Spectral shape Not a Planck function!

Photosphere without shocks

Photospheric emission from an undisruptive jet What do we expect?

Coasting phase spectrum from a non-dissipative jet

Pe'er 2008, Beloborodov 2011, Lundman, Pe'er, & Ryde 2013

Photospheric emission from an undisruptive jet What do we expect?

Photosphere in a nondissipative, radiation dominated flow

Ryde, Lundman & Acuner (2017)

Nondissipative jet, photospheres in the transition phase Different values of r_{ph}/r_s

A few per cent of all spectra are quasi-Planckian

A quarter of all α -values are consistent with NDP

What about the other 3/4 ?

These spectra are broader than photospheric spectra

 Additional radiation processes, e.g. optically-thin synchrotron emission

- Multiple emission components, photosphere + synchrotron
- Viewing angle and Lorentz profile
- Smearing in time: enough time resolution?
- Subphotospheric heating (Rees & Meszaros 05, Pe'er+06)

What about the other 3/4 ?

These spectra are broader than photospheric spectra

Subphotospheric heating

o Alters the spectrum

Shocks are radiation mediated

 Previously no radiation mediated shock (RMS) model has been fitted to data

Eichler (1994), Rees & Mészáros (2005), Pe'er+ (2006), Levinson & Bromberg (2008), Katz+ (2010), Budnik+ (2010), Levinson (2012), Beloborodov (2017), Ito+ (2018), Levinson & Nakar (2020)

Gottlieb+ (2020)

Non relativistic photon-rich RMS

- · Smoother, more predictable profile compared to relativistic RMS
- Computationally heavy to run

Analogous to Fermi type acceleration

- In Fermi shock acceleration, particles scatter back and forth across the shock, gaining energy on average
- An RMS is similar, but it is the photons themselves that scatter and the particles are cold
- A photon-rich RMS forms a powerlaw spectrum

Fermi-type photon energy gain across RMS ≈ repeated scatterings with hot electrons

Evolution described by the Kompaneets equation

Treumann & Jaroschek (2008)

The KRA (Kompaneets RMS Approximation)

Mildly relativistic shock: $(\beta \gamma)_{u} = 3$

Samulesson, Lundman & Ryde (2022)

The KRA (Kompaneets RMS Approximation)

Radiation mediated shocks - observed spectrum

Example: GRB210619

RMS model fit to time resolved data

Example: GRB150314A

RMS model fit to time resolved data

Samulesson, Lundman & Ryde (2022)

Example: GRB211211A

Two distinct spectral breaks:

marginally fast cooling synchrotron (Gompertz+23), multiple components (Peng+24)

Quantitative comparison against observations

- 150 synthetic RMS spectra
- Fitted with a Band function
- Comparison with catalogued α -values are promising

Samuelsson & Ryde (2023)

Catalogue distribution of α

Samuelsson & Ryde (2023)

Example: GRB160821A A clear case of synchrotron emission

Sharma+19; Ravasio+19; Gill+20

Synchrotron emission in 160821A

Interpretation (Pe'er & Ryde 2024)

Interaction with the immediate circumburst medium, such as a WR ring nebula.

Produces efficient synchrotron emission from the reverse shock, caused by the blast wave, at the contact discontinuity between the shocked wind and the shocked ISM

123

Synchrotron emission in GRB 110205A and 121217A

Conclusions

- The GRB photosphere can have a variety of spectral shapes
- Narrowest occur in the acceleration phase
- Shocks below the photosphere are radiation-mediated
- The KRA, which models shock dissipation using hot electrons, can reproduce spectra from detailed RMS simulations
- Dissipative photospheric models can produce broad spectra and reproduce most observed spectral shapes
- To distinguish between RMS and synchrotron spectra one needs additional clues