

What can we learn from GRB pulses and their shapes: implications on GRB prompt phase

Asaf Pe'er

Bar Ilan University

With

erc

- Gowri Anil
- 💠 Damien Begue
- Husne Dereli-Begue
- Felix Ryde
- Mukesh Vyas

December 2024

Summary

1) Lorentz factor of many GRBs (but not all) may be only a few tens, smaller than what many people think.

2) As a result, photospheric emission may be pronounced

- 3) The observed spectra is complex, due to
 (i) sub-photospheric energy dissipation;
 (ii) structured jet that leads to a new mechanism of photon energy gain
- 4) (if time permits) revival of proton-synchrotron, and unique conditions for pair annihilation line in GRB221009A

1. Flares during the x-ray plateau

Swift launch: Nov. 2004

X-ray Plateau

Swift launch: Nov. 2004

pacecraft

Ubiquitous: X-ray plateau seen in 60% of GRBs (Srinivasaragavan + 2020)

Plethora of ideas...

- **Continuous energy injection** that slows down the acceleration Zhang et. al., 2006; Nousek et al., 2006; Panaitescu et. al., 2006 ; Granot et. al., 2006; Fan & Piran, 2006 ; Ghisellini+2007...
- 2 component jet Ramirez-Ruiz + 2002, Granot+ 2006, Racusin et. al., 2008, ...
- Forward shock emission in Inhomogeneous media Toma et. al. 2006
- Scattering by dust / modification of ambient density by a gamma-ray trigger loka et. al., 2006, Shao & Dai, 2007..
- Dominant reverse shock emission Uhm & Beloborodov, 2007, Gennet + 2007, Hascoet+2014...
- Evolving microphysical parameters (ε_{e} , ε_{B}) loka et. al., 2006, Panaitescu, 2006
- Viewing angle effect: jets viewed off-axis Eichler & Granot 2006, Toma + 2006, Eichler + 2008, 2014, Oganesyan et. al., 2019, Beniamini et. al., 2020
- Forward shock before deceleration Shen & Matzner, 2012

Plethora of ideas...

- **Continuous energy injection** that slows down the acceleration Zhang et. al., 2006; Nousek et al., 2006; Panaitescu et. al., 2006 ; Granot et. al., 2006; Fan & Piran, 2006 ; Ghisellini+2007...
- 2 component jet Ramirez-Ruiz + 2002, Granot+ 2006, Racusin et. al., 2008, ...
- Forward shock emission in Inhomogeneous media Toma et. al. 2006
- Scattering by dust / modification of ambient density by a gamma-ray trigger loka et. al., 2006, Shao & Dai, 2007..
- Dominant reverse shock emission Uhm & Beloborodov, 2007, Gennet + 2007, Hascoet+2014...
- Evolving microphysical parameters (ε_{e} , ε_{B}) loka et. al., 2006, Panaitescu, 2006
- Viewing angle effect: jets viewed off-axis Eichler & Granot 2006, Toma + 2006, Eichler + 2008, 2014, Oganesyan et. al., 2019, Beniamini et. al., 2020
- Forward shock before deceleration Shen & Matzner, 2012

Requires: (i) explosion into a "wind"; (ii) $\Gamma_i < 100$; (iii) a-chromatic breaks

Does Γ have to be > 100?

Measure Γ : 1. Opacity; 2. strong thermal; 3. onset of afterglow (reverse shock)

 10^{5}

Basics of synchrotron (wind)

 $v_m^{ob.} \sim B \gamma_{el}^2 \Gamma$ $v_c^{ob.} \sim \Gamma^3/(B^3 r^2)$ $F_{v,peak} \sim N_e B \Gamma$

Coasting: $v_m^{ob.} \sim t^{-1}$; $v_c^{ob.} \sim t$

* Shock generates B field
 & accelerates particles:
 γ_{el}~ Γ ε_e; B ~ε_B u

Self-similar decay: $v_m^{ob.} \sim t^{-3/2}$; $v_c^{ob.} \sim t^{1/2}$

Basics of synchrotron (wind): theory vs. data

Bridging an observational gap

 $<\Gamma_i>=51$ bridges an observational gap btw blazars and LAT/ no plateau GRBs And- can potentially explain polarization angle change

Independent way to discriminate between models? 1.a. Flares during the early afterglow phase

Sample consists of 89/100 GRBs (11 GRBs are excluded due to special features):

- 1) <u>~69% of all GRBs analyzed have flares.</u>
- 2) ~64% of all GRBs analyzed have plateau
- 3) ~68% of the GRBs with flares have a plateau.
- 4) <u>~73% of plateau GRBs have flares.</u>

Conclusion- (1): The existence of flares is independent of the existence of a plateau.

Dereli-Begue, AP, Begue, Ryde, 2024, submitted

Results: flare properties (1)

No notable differences between flare properties

Dereli-Begue, AP, Begue, Ryde, 2024, submitted

Flare properties - implications

Flare peak time

Main results:(1) t_{peak} is, on the average,same for both sample(2) < $\Delta t/t_{peak}$ > ~1, irrespectiveof the environment.

Relative time-scale variability

Implications for Plateau origin:

Late time central engine activity: Flares expected to occur later; $\Delta t/t_{peak}$ have different distributions \rightarrow contradicts results (1) and (2) X Viewing angle effect: Flares in plateau GRBs expected at later times \rightarrow contradicts result (1) X – similar for density effects x Low Lorentz factor during the coasting phase: The dissipation that produces the flares occurs at smaller radii \rightarrow no contradiction \checkmark

1.b. Hints from the prompt emission itself? Fitting prompt emission: Norris function

Norris et. al. (1996, 2005,...); Hakkila + 2018; ...

"Fast Rise, Exponential Decay" (FRED)

ters have relatively simple expressions. A form proportional to the inverse of the product of two exponentials, one increasing and one decreasing with time, satisfies the requirements

$$I(t) = A\lambda / [\exp(\tau_1/t)\exp(t/\tau_2)]$$

= $A\lambda \exp(-\tau_1/t - t/\tau_2)$ for $t > 0$, (1)

Norris (2005) function: 3 free parameters

408

Fitting prompt emission: new function

$$I(t) = A \times \left[1 - tanh\left(\frac{1}{s_r}(t - r_r)\right)\right] \times \left[1 + tanh\left(\frac{1}{s_l}(t - r_l)\right)\right].$$
 5 (4) de

5 (4) degrees of freedon

Fitting prompt emission pulses

Key result -1: pulse shape evolves !

Shape = s_l/s_r

Spearman = -0.36

Early pulses tend to be more symmetric; Later pulses tend to be more FRED-like !

Key result -2: pulse shape correlates with spectra

<u>Possible interpretation</u>: Change of radiative mechanism: thermal \rightarrow synchrotron

Time scale -?
$$t = \frac{r_{ph}}{\Gamma^2 c} = \frac{L\sigma_T}{8\pi m_p \Gamma^5 c^4} = 2 ms L_{51} \left(\frac{\Gamma}{100}\right)^{-3} = 1 s L_{51} \left(\frac{\Gamma}{30}\right)^{-3}$$

Anil, **AP**, Ryde, Dereli-Begue, arXiv:2409.17860

2. Pronounced photospheric signal – how does it look like ? "Physical broadening" the photospheric signal

Basic idea:

Sub photospheric energy dissipated (heating plasma at $r_d <= r_{pht.}$)

Hot (thermal) electrons, colder photons (alternative: photon gain energy directly)

Multiple IC scattering

Spectra depends on:

- heating rate
- heating location (crucial!!)
- magnetic field strength

Energy dissipation below the photosphere (Dissipative photosphere)

Complex thermal - non thermal emission spectra

Pe'er, Meszaros & Rees 2006

- Giannios 2006, 2012
- Giannios & Spruit 2007
- loka + 2007
- Pe'er + 2010
- Beloborodov 2010
- Lazatti & Begelman 2010
- Vurm +11, 12
- Rudolph + 24

"Quasi steady state": <u>Electrons distribution is quasi-Maxwellian</u> (not power law)

Main rad. Process (above thermal peak): IC of thermal photons

spectra is **NOT** thermal, neither a simple broken Power law)

3. Structured jet and its implications $\Gamma = \Gamma(\theta)$

(Zhang, Woosley & MacFadyen, 2003)

Extended emission from high angles

Flat spectra for different viewing angles (prompt!)

Photon up-scattering by Fermi-like mechanism

Repeated scattering between regions of different Γ , causes photon energy increase.

Lundman, AP & Ryde (2013, 2015); Ito.. Pe'er et. al. (2013)

Full calc. >>

10⁰

Photon energy gain: basic idea

29

Multiple scattering: obtaining a power law

Results: Monte-Carlo simulation

 N_{γ} =10^{6.5}, Γ_0 =100, θ_i =0.01 ϵ_0 = 10⁻⁶ $m_e c^2$

Confirm analytic estimate: High energy power law; spectral slope β =-2.54

Semi-analytic expression of the spectral slope

Prediction: energy-dependent spectral lags

Vyas, AP, Iyyani, Ap.J., 2024

Summary

- Lorentz factor of many GRBs (but not all) may be only a few tens, smaller than what many people think.
- 2) As a result, photospheric emission may be pronounced
- 3) The observed spectra is complex, due to

 (i) sub-photospheric energy dissipation;
 (ii) structured jet that leads to a new mechanism of photon energy gain

0.5 U 0.4 0.3 0.2 0.1

Evidence for pair annihilation line in the BOAT GRB221009A

Ravasio et. al. (2023)

GRB 221009A - "brightest of all times" (BOAT) Evidence for pair annihilation line

Narrow, ~10 MeV emission line , detected for ~80 s during the early afterglow phase

Ravasio et. al., 2023

Pe'er & Waxman, 2004

Possible detection of pair annihilation line ?

Consequence: measure of bulk $\Gamma \simeq 20$!?

Where was it hiding all these years?

Pair annihilation is expected in a narrow range of parameter space: high L, low Γ

Recent years: available TeV data (and more to come !)

Leptonic model fits (GRB 190114C)- IC

Pros:

- 🗸 Natural
- ✓ Minimal freedom
- ✓ Reasonably low energy (compared to proton-synchrotron)
- ✓ Low B-field

P-synchrotron - ? (GRB 190114C)

- Standard BM76 dynamics
- both electrons and protons are acceleratres by forward shock; → synchrotron.
 e- slow cooling; p- fast cooling
- (degree of freedom): A fraction $\xi_p \sim 5-20\%$ of protons are accelerated. $\rightarrow E_{tot, iso} \sim 10^{54.5}$ erg
- Fit results: $\varepsilon_p = 0.8$, $\varepsilon_e = 0.003$, $\varepsilon_B = 0.13$ (most energy with protons); $\xi_p=0.2$ (efficiency= $E^{ob}/E_{tot} \sim 5-10\%$)

Isravel, Begue, Pe'er, 2023a

P-synchrotron vs. IC

<u>Condition for domination</u>: $\varepsilon_{B} >> \varepsilon_{e} \rightarrow P$ -sync. dominate $\varepsilon_{B} << \varepsilon_{e} \rightarrow e$ -IC dominate

Summary

- Lorentz factor of many GRBs (but not all) may be only a few tens, smaller than what many people think.
- 2) As a result, photospheric emission may be pronounced
- 3) The observed spectra is complex, due to

 (i) sub-photospheric energy dissipation;
 (ii) structured jet that leads to a new mechanism of photon energy gain
- 4) (if time permits) revival of proton-synchrotron, and unique conditions for pair annihilation line in GRB221009A

log(w/t_{pk}

Щ^{0.4} Д_{0.3}

Summary

***** During the prompt phase:

GRB pulses <u>change their shape</u>. Initial pulses – more symmetric Later pulses – more FRED-like Shape correlates with spectra: symmetric pulses show steeper slopes

Interpretation: change of radiative mechanism: thermal \rightarrow synchrotron

During the early afterglow phase:

Flares show similar behaviour for GRBs with/ without plateau

→ Strong indication for low Lorentz factor in GRBs with plateau

Many GRB Lorentz factors may be lower than 100 !

Asaf.peer@biu.ac.il

