pace P escope

GRB 221009A: the B.O.A.T. Burst that Shines in Gamma Rays

http://arxiv.org/abs/2409.04580

Nicola Omodei (Stanford University) Elisabetta Bissaldi, Philippe Bruel, Niccolò Di Lalla, Roberta Pillera, on behalf of the Fermi LAT collaboration (Special thanks to Sunny & Yoni!)

GRB+CE2024

GRB221009A was an extraordinary event lacksquare- A burst as energetic (~10⁵⁵ erg) and as close to Earth (z=0.151) as 221009A is thought to be a once-in-10,000-year event (Burns et al). The B.O.A.T. is the Brightest Of All Time

GRB+CE2024

Few remarkable observations

LHAASO detection of the TeV afterglow
 – LHAASO Collaboration, 2023

- Dust scattering rings visible in Swift and XMM and IXPE
 - Williams at al. 2023
 - Tiengo et al, 2023

GRB+CE2024

- IXPE collaboration (Negro et al. 2023)

Nicola Omodei – Stanford/KIPAC

GRB+CE2024

 I want to present the observations of GRB 221009A by Fermi LAT with minimal interpretation and, like in a "connect-the-dots" game, leave it to you to draw most of the conclusions—taking

To add a picture to this slide I first asked ChatGPT:

"Do you know what a connect-the-dot game is"?

GRB+CE2024

• I want to present the observations of GRB 221009A by Fermi LAT with minimal interpretation and, like in a "connect-the-dots" game, leave it to you to draw most of the conclusions-taking

To add a picture to this slide I first asked ChatGPT:

"Do you know what a connect-the-dot game is"?

Yes! A connect-the-dots game is a puzzle where a series of numbered dots are placed on a page or surface. The player draws lines sequentially from dot 1 to dot 2, dot 2 to dot 3, and so on. Once all the dots are connected in the correct order, they form a recognizable image or shape.

 I want to present the observations of GRB 221009A by Fermi LAT with minimal interpretation and, like in a "connect-the-dots" game, leave it to you to draw most of the conclusions—taking

To add a picture to this slide I first asked ChatGPT: "Do you know what a connect-the-dot game is"?

Yes! A connect-the-dots game is a puzzle where a series of numbered dots are placed on a page or surface. The player draws lines sequentially from dot 1 to dot 2, dot 2 to dot 3, and so on. Once all the dots are connected in the correct order, they form a recognizable image or shape.

Ok... then I asked : "Can you draw a connect-the-dot game that when the dots are connected a boat appears?"

 I want to present the observations of GRB 221009A by Fermi LAT with minimal interpretation and, like in a "connect-the-dots" game, leave it to you to draw most of the conclusions—taking

Connect-the-dots game...

 I want to present t and, like in a "con full advantage of t

To add a picture to this slic "Do you know what a connect

Yes! A connect-the-dots gan numbered dots are placed of lines sequentially from dot 1 all the dots are connected in recognizable image or shape

Ok... then I asked : "Can yo when the dots are connected

vith minimal interpretation to find the conclusions—taking

...my version...

...my version...

- GRB 221009A was at large incident angle (~70°) at the time of the GBM trigger and quickly left the LAT field of view. Re-entered ~4ks later
 - Low exposure during the prompt phase
 - Afterglow well sampled
- Effects in the LAT due to high flux of hard X rays
 - Extra "hits" in the tracker
 - Decrease of the live time due to extra veto in the ACD
 - The energy can be overestimated by up to 300 MeV
- We fix the problem!
 - Developed a modified energy estimator and use the Earth limb to calibrate the flux measurement during the BTI
 - Details here: http://arxiv.org/abs/2409.04580

10²

0

100

200

300 T-T₀ [s]

600

• LAT events

•

400

•

Fermi composite light curve

- Triggering pulse: Combining GBM and LAT data and using ThreeML for fitting.
 - Powe law with exp. cut off is preferred in all intervals

- \therefore Cut off at very high energy (15 MeV)
- \star High-energy light curve precedes the low energy LC (like GRB 130427A, indicative of synchrotron emission)
- \approx Softening of the spectrum (-1.36 \rightarrow -1.88)
- \checkmark Peak energy "cools down" (15 MeV \rightarrow 0.33 MeV)

Fermi composite light curve

10²

100

200

300

T-T₀ [s]

600

LAT events

500

- **<u>Prompt emission</u>: Extremely high flux of Hard X-rays increased** the noise in all LAT subsystems
 - The LAT was not designed for this!
- BTI definition:
 - T<216.6 and T>280.6: LAT data OK!
 - [216.6-280.6] NOT USABLE with standard analysis
 - We used the results of the template fitting
 - Appendix A of our paper (http://arxiv.org/abs/2409.04580) entirely dedicated to describe this analysis.
- During the BTI: LAT shows a single peak as opposed as the two peaks from the GBM.
- Flux maximum in the BTI (important for measuring the energetics!)
- \Rightarrow 4 event >10 GeV arrive during BTI (highest at 99.4 GeV, breaking the GRB130427A record)
- Gamma-gamma opacity => Lower limit for the bulk Lorentz factor: Γ ~500

Fermi composite light curve

- **<u>Prompt emission</u>**: Extremely high flux of Hard X-rays increased the noise in all LAT subsystems
 - The LAT was not designed for this!
- BTI definition:
 - T<216.6 and T>280.6: LAT data OK!
 - [216.6-280.6] NOT USABLE with standard analysis
 - We used the results of the template fitting
 - Appendix A of our paper (<u>http://arxiv.org/abs/2409.04580</u>) entirely dedicated to describe this analysis.
- During the BTI: LAT shows a single peak as opposed as the two peaks from the GBM.
- Flux maximum in the BTI (important for measuring the $\mathbf{\mathbf{x}}$ energetics!)
- 4 event >10 GeV arrive during BTI (highest at 99.4 GeV, $\mathbf{\mathbf{x}}$ breaking the GRB130427A record)
- Gamma-gamma opacity => Lower limit for the bulk Lorentz factor: Γ ~500

The afterglow phase

100

 10^{-1}

10⁻² ≥

10-3 9

 10^{-4}

 10^{-5}

 10^{-6}

 \leq

(d)

den

ш

- After the gap due to Earth occultation, flux decays as a power law, with constant spectral index (typical of GeV-detected afterglow)
- Estimated duration: 176ks (2 days, <u>new</u> $\mathbf{\mathbf{x}}$ <u>record</u>!)
- \Rightarrow 3 events >10 GeV, one at 400 GeV! (New <u>record</u>!)

$T-T_0$	Energy	Prob.	Conv. type.	Ang. Sep.		
(s)	(GeV)			(°)		
	Prompt					
240.336	99.3	_	Back	0.70^{\dagger}		
248.427	75.2	1.000	Back	0.05		
251.724	38.9	1.000	Back	0.25		
279.342	65.0	1.000	Front	0.19		
		Exten	ded			
10475.104	24.4	0.998	Front	0.10		
16176.428	14.7	0.993	Front	0.16		
33552.966	397.7	1.000	Back	0.02		

Temporal evolution of the 0.1-100 GeV light curve

Afterglow model from Nakar & Piran 2004
$$f_0(T) = K \left(\frac{1}{2} \left(\frac{T - T_{on}}{\tau} \right)^{-\xi \alpha_1} + \frac{1}{2} \left(\frac{T - T_{on}}{\tau} \right)^{-\xi \alpha_2} \right)^{-\frac{1}{\xi}}$$

GRB+CE2024

Pulse model from model from Norris et al. 2005 (also adopted by Hakkila and Preece, 2014)

$$f_{i}(T) = K_{i} \begin{cases} \exp\left(\frac{T-T_{p,i}}{\tau_{i}}\right), & \text{for } T < T_{p,i}, \\ \exp\left(\frac{T_{p,i}-T}{\xi_{i}\tau_{i}}\right), & \text{for } T > T_{p,i}, \end{cases}$$

Measurement of the bulk Lorentz factor

	\mathbf{f}_0	f_0+f_1	$f_0 + f_1 + f_2$	$f_0 + f_1 + f_2 + f_3$
$K_0 \ [erg \ cm^{-2} \ s^{-1}]$	$(1.8 \pm 0.3) imes 10^{-5}$	$(1.6 \pm 0.3) imes 10^{-5}$	$(1.3 \pm 0.3) imes 10^{-5}$	$(1.1^{+0.4}_{-0.2}) \times 10^{-5}$
$lpha_1$	3.0 (fix)	3.0~(fix)	$3.0~({\rm fix})$	3.0 (fix)
$lpha_2$	-1.35 ± 0.03	-1.31 ± 0.04	-1.27 ± 0.05	$-1.25\substack{+0.06\\-0.05}$
ξ	2(fix)	$2(\mathrm{fix})$	$2(\mathrm{fix})$	$2(\mathrm{fix})$
$ au~[{ m s}]$	20 ± 2	18^{+3}_{-2}	17^{+4}_{-3}	15^{+4}_{-3}
T_{on} [s]	213 ± 1	214 ± 1	215 ± 2	215 ± 2
$K_1 \ [erg \ cm^{-2} \ s^{-1}]$	-	$(1.7^{+1}_{-0.6})\! imes\!10^{-5}$	$(1.7^{+0.6}_{-0.5})\! imes\!10^{-5}$	$(1.7^{+0.7}_{-0.4}) imes 10^{-5}$
$\mathrm{T}_{\mathrm{p},1}~\mathrm{[s]}$	-	330 ± 10.0	333 ± 2	333 ± 2
$ au_1~[{ m s}]$	-	22^{+10}_{-8}	25^{+9}_{-6}	25^{+8}_{-5}
ξ_1	-	$1.1^{+1}_{-0.6}$	1.1 ± 0.4	$1.0\substack{+0.4\\-0.3}$
$K_2 \ [erg \ cm^{-2} \ s^{-1}]$	-	-	$(1.2^{+0.7}_{-0.4})\! imes\!10^{-4}$	$(1.2^{+0.6}_{-0.4}) imes 10^{-4}$
$\mathrm{T_{p,2}}~\mathrm{[s]}$	-	-	247.4 ± 0.9	247.3 ± 0.9
$ au_2~[\mathrm{s}]$	-	-	4^{+2}_{-1}	4^{+2}_{-1}
ξ_2	-	-	$0.5\substack{+0.3 \\ -0.2}$	$0.5\substack{+0.3\\-0.2}$
$ m K_3 \ [erg \ cm^{-2} \ s^{-1}]$	-	-	-	$(1.1^{+4}_{-0.9}) imes 10^{-5}$
$\mathrm{T_{p,3}}~\mathrm{[s]}$	-	-	-	263^{+3}_{-2}
$ au_3~[{ m s}]$	-	-	-	$0.6\substack{+0.2\\-0.1}$
ξ3	-	_	-	3^{+3}_{-1}
BIC	69.2	64.9	62.6	71.2
Δ_{BIC}	0	-4.3	-2.3	6.3
T _p	21^{+3}_{-2}	23 ± 4	18^{+4}_{-3}	17 ± 4
Γ (wind)	240 ± 7	237 ± 10	250 ± 10	$250.0\substack{+20.0\-10.0}$
Γ (ISM)	490 ± 20	480 ± 30	520 ± 40	$530.0^{+50.0}_{-40.0}$
Fluence $[erg \ cm^{-2}]$	$(1.4 \pm 0.1) \times 10^{-3}$	$(2.2 \pm 0.3) imes 10^{-3}$	$(2.6 \pm 0.4) imes 10^{-3}$	$(2.7 \pm 0.4) imes 10^{-3}$
E_{iso} [erg]	$(9\pm 0.8){ imes}10^{52}$	$(1\pm0.2)\! imes\!10^{53}$	$(2\pm0.3){ imes}10^{53}$	$(2 \pm 0.3) { imes} 10^{53}$

GRB+CE2024

- From the peak of the FS light curve we can estimate the bull Lorentz factor:

$$\Gamma = \left[\left(\frac{(17 - 4s)}{16\pi (4 - s)} \right) \left(\frac{E_K}{n_0 m_p c^{5-s}} \right) \right]^{\frac{1}{8-2s}} \left(\frac{T_p}{1+z} \right)^{-\frac{3-s}{8-2s}}$$

Nappo et al. 2014, Ghirlanda et al. 2018

 $-\Gamma \sim 250$ (wind, s = 2), $\Gamma \sim 520$ (ISM, s = 0)

If we assume the derivation from Sari Piran '99 (same as in the LHAASO paper) we obtain

 $-\Gamma \sim 440$ (ISM, s = 0) as in their paper.

- Integrating the light curve, we can also estimate the energy released in the 0.1-100 GeV band:
 - $-E_{iso} \sim 2 \times 10^{53} \text{erg}$

- From the two values of Gamma (wind and ISM), we can compute the maximum energy of synchrotron emission (cooling=acceleration)
- $E_{max,syn} \sim (100 \text{MeV}) \times \Gamma/(1 + z)$, and for (g=0, rad. g=1, adiab.)

$$\Gamma(T) \sim \Gamma_0 \left(\frac{T+T_p}{T_0+T_p} \right)^{-(3-s)/(7+g-2s)}$$

• LAT high-energy events are not compatible with pure synchrotron emission

(GeV)

Energy

Maximum synchrotron energy

Nicola Omodei – Stanford/KIPAC

Fermi - LHAASO spectral fit

Interval (s from T_0)	SBPL	SBPL+G	SBPL+PL	SBPL+G+PL	SBPL+SBPL	SBPL+G+SBPL	Gaussian Line	Break at high energy
280.6 - 290.6	413.0	413.1	155.4	143.8	10.9	0.0	Strong	Strong
290.6 - 300.6	156.0	155.9	91.4	73.2	18.9	0.0	Strong	Strong
300.6 - 325.6	161.5	144.4	146.1	118.7	26.5	0.0	Strong	Strong
325.6 - 340.6	137.8	137.9	88.9	89.0	30.8	0.0	Strong	Strong
340.6 - 355.6	203.4	203.5	72.9	69.8	5.6	0.0	Strong	Strong
355.6 - 380.6	186.2	185.9	63.9	61.1	2.7	0.0	Moderate	Strong
380.6 - 435.6	472.6	472.7	173.7	173.9	0.4	0.0	Not required	Strong

Table 6. Decrement of the Bayesian evidence $(\Delta \log Z)$ with respect the best fit model.

GRB+CE2024

Sermi

Gamma-ray

From the LHAASO paper we sample their best fit model (flux and spectral index) to generate spectra during 7 LAT time intervals. We then use 3ML to perform a join likelihood fit.

- We tested several models, using *multinest* as Bayesian sampler (up to 11 free parameters). We use the **Bayesian evidence to discriminate** between models (Jeffreys' scale)
- Gaussian line (already discovered by Ravasio et al.):
- Hard to soft evolution (12 MeV-> 5) MeV)
- 511 keV e⁺ e⁻ annihilation line shifted by Γ ~20 decelerating to Γ ~10
 - Spine-sheer jet model
 - Off axis motion
- LLE data increases the significance of the MeV line (analysis performed by S. Lesage).

UTC	Energy	R.A.	Dec.	Conv. type.	Ang. Sep.
(s)	(GeV)	(J2000, o)	(J2000, o)		0
2009-11-01 06:21:03.90	117.6	288.9	20.0	Back	0.63
2010-03-10 17:30:57.05	107.1	288.5	19.5	Back	0.31
2015-11-04 12:22:50.10	103.1	287.7	19.2	Front	0.76
2016-12-21 08:42:19.47	268.1	288.5	20.1	Front	0.38
2017-06-30 08:24:03.47	113.1	287.4	20.0	Front	0.85
2022-10-09 22:36:17.96	397.7	288.2	19.8	Back	0.02

400 GeV event

• We can compute the probability to have 1 event when [N background] are observed using Li & Ma formalism:

N signal	N background	probability
1	5	1.6x10 ⁻⁴ (3.6)
1	1	4.5x10 ⁻⁵ (3.9)
1	0	9.3x10 ⁻⁶ (4.3)

If the photon comes from the GRB, we can also compute the probability to obtain 1 or more event above 400 GeV (or 360 GeV) from the extrapolation of the spectrum <100GeV:

E threshold	probability
400	4.3x10 ⁻⁶ (4.4) – 5.8x10 ⁻⁴ (3.2)
360	7.3x10 ⁻⁶ (4.3) – 1.0x10 ⁻⁵ (3.1)

EM cascade from TeV photons interacting with the EBL:

- Assuming a 30 TeV primary photon, would require a B~2×10⁻¹⁸, not compatible with B>3×10⁻¹⁶ G from non-detection of halos around blazars (Ackermann et al. 2018)

• Exceptionally fluent, but not quite exceptional in terms of Eiso - Very close, comparable to high redshift LAT detected GRBs => <u>extremely rare</u>! appears to be a once-in-10,000-year event (Burns et al. 2023) **GRB** population?

GRB+CE2024

– Geometric extrapolation of the total fluence and peak flux distributions, GRB 221009A

– Probability to observe one in the Fermi lifetime $\sim 10^{-3}$: should we revise what we know about

- GRB 221009A is the brightest GRB ever detected by the LAT (and by many other instruments)
 - Complex event, required a lot of non standard analysis!
 - During the BTI: we provided a reliable measurement of the flux
- Many records have been broken... (Fluence, high-energy events, duration) – High E_{iso}, especially considering its proximity: Incredibly rare event!
- What did we learn?
 - Triggering pulse (precursor?):
 - Seen at high energy (uncommon)
 - Very high-energy cut off, high-energy precedes low-energy: synchrotron?
 - **Prompt**:
 - Gamma factor ~ 250-500, depending on the environment.
 - "Simultaneous" prompt and afterglow, with pulses on top of smooth afterglow model
 - Afterglow model well synchronized with LHAASO-WCDA light curve
 - Synchrotron + SSC + gaussian line preferred model
 - Afterglow:
 - intriguing 400 GeV event at 33ks after the trigger (although not firmly associated with the burst)
 - ChatGPT sucks at connect-the-dots game...
- Paper under review, available on the arXiv: <u>http://arxiv.org/abs/2409.04580</u>

Conclusion

Nicola Omodei – Stanford/KIPAC

Back up slides

GRB+CE2024

- Highest photons detected by the LAT - at 99.3 GeV during the prompt phase, 400 GeV during the afterglow)
- **Highest fluence** \bullet – 10⁻² erg/cm² (>1 order of magnitude brighter than the previous record holder.
- Longest duration - 2 days

- 1. Developed a modified energy estimator using only the strips around the event track;
- 2. We use Earth-limb data to constrain the selection efficiency;
- 3. We use the information in the top corner of the tracker and the information in the bottom ACD to define the boundaries of the BTI $[T_0+216.6 - T_0+280.6];$
- 4. We perform Monte Carlo simulations to estimate the selection effective area as a function of time, as well as the false positive rate due to the LE background;
- 5. We apply a template fit approach to derive the HE emission light curve.

- strip in the corner planes) to monitor the extra noise as a function of time
- maximum of P1: ~900 photons/m²/10µs [0.1-30 MeV]

• We use some tracker-related quantities (i.e. the average fraction of events with at least a fired • We use simulations to translate this quantity into the flux of low energy photons. At the

- calibration source to estimate the trigger and on-board filter efficiency;
- Template fitting (piece-wise linear function + 2 gaussians)
- Estimate the <u>relative efficiency</u> with respect to a reference interval (T0+600.6, T_0 +650.6)

Using the Earth limb to estimate the efficiency

• The Earth limb is a bright source, visible in the LAT data at θ zenith ~ 113. It offers a

<u>Oct.9 2022</u> \bullet

- 13:16:60 UT (T₀) Fermi-GBM trigger 221009553 (no prompt GCN notices)
- 14:10:17 UT (T₀+3200s) Swift trigger (<u>GCN</u> after 20min Swift J1913.1+1946)
- 20:54:36 UT Fermi-GBM reports that trigger 221009553 is superbright+long GRB 221009A
 → location consistent with Swift → same event!!!
- 21:45:05 UT Fermi-LAT <u>reports</u> HE emission (E_{max}: 8 GeV @766 s post Swift trigger)
- <u>Oct.10, 2022</u> \bullet
 - X-shooter/VLT <u>reports</u> redshift z = 0.151
 - Fermi-LAT <u>reports</u> refined analysis (Duration >25ks and E_{max}: 99 GeV @T₀+240s)
 - IceCube <u>reports</u> neutrino UL (no detection)
 - Konus/WIND <u>reports</u> highest GRB fluence in 28 years of operation
- <u>Oct.11, 2022</u> \bullet
 - LHAASO reports >500 GeV emission within T_0 +2000s (>100 σ) + 18 TeV photon (10 σ)
 - Swift/XRT reports complex system of bright expanding dust-scattering rings
 - HAWC <u>reports</u> upper limits 8 hours after trigger (See Lucia Tian presenation)
- <u>Oct.12, 2022</u>
 - Carpet-2 <u>reports</u> 250 TeV photon-like air shower
- <u>Oct.14, 2022</u>
 - Xia et al. <u>report</u> 400 GeV photon observed by Fermi-LAT at T₀+0.4 d

The BOAT timeline

<u>Oct.9 2022</u> \bullet

- 13:16:60 UT (T₀) Fermi-GBM trigger 221009553 (no prompt GCN notices)
- 14:10:17 UT (T₀+3200s) Swift trigger (<u>GCN</u> after 20min Swift J1913.1+1946)
- 20:54:36 UT Fermi-GBM reports that trigger 221009553 is superbright+long GRB 221009A
 → location consistent with Swift → same event!!!
- 21:45:05 UT Fermi-LAT <u>reports</u> HE emission (E_{max}: 8 GeV @766 s post Swift trigger)
- <u>Oct.10, 2022</u> \bullet
 - X-shooter/VLT <u>reports</u> redshift z = 0.151
 - Fermi-LAT <u>reports</u> refined analysis (Duration >25ks and E_{max}: 99 GeV @T₀+240s)
 - IceCube <u>reports</u> neutrino UL (no detection)
 - Konus/WIND <u>reports</u> highest GRB fluence in 28 years of operation
- <u>Oct.11, 2022</u> \bullet
 - LHAASO reports >500 GeV emission within T_0 +2000s (>100 σ) + 18 TeV photon (10 σ)
 - Swift/XRT reports complex system of bright expanding dust-scattering rings
 - HAWC <u>reports</u> upper limits 8 hours after trigger (See Lucia Tian presenation)
- <u>Oct.12, 2022</u>
 - Carpet-2 <u>reports</u> 250 TeV photon-like air shower
- <u>Oct.14, 2022</u>
 - Xia et al. <u>report</u> 400 GeV photon observed by Fermi-LAT at T₀+0.4 d

The BOAT timeline

