Long GRBs from WR-HMXBs

Enrique Moreno Méndez

Collaborators: G.E. Brown, C.-H. Lee, M. Cantiello, F. De Colle, D. López Cámara,

FC UNAM

Enrique Moreno Méndez

Collaborators: G.E. Brown, C.-H. Lee, M. Cantiello, F. De Colle, D. López Cámara,

NR-HMXBS

FC UNAM

Collapsar IGRBs

- $E_{HN,kin} \geq 30$ bethes (foes)
- V_{HN} ~ 30,000 km/sec

• Type Ic (bl) HNe asociated to GRBs

- Progenitors: Wolf-Rayet (He) stars
- Accretion disk formation required.

Magnetic field:

B ~ (10e15 G) ~ Magnetars ↔ • But... stellar winds remove L!!

NASA / SkyWorks Digital

He-star stage is even worse.

WR-phase does not help either.

I.e., not great for GRB progenitors.

Large-mass stars lose mass (winds) and angular momentum at a very large rate.

• ~50% of visible stars are binaries.

>71% of massive are binaries or multiples.

Sana et al. 2012

Binaries

Evolution in contact binaries

• We need to allow for the He core to form so a CO is produced (Case A is out).

We are left with Case C mass transfer (and low Z)!

• We need to prevent mass and angular momentum from being lost (Case B is out of the question)

Tidal synchronization (or Spin-Orbit coupling; option 1)

• Equilibrium tide (turbulent discipation in convective envelopes; RSGs?):

$$t_{sync} = \frac{1}{6q^2k_2} \left(\frac{MR^2}{L}\right)^{1/3} \frac{I}{MR^2} \left(\frac{a}{R}\right)^6$$

Dynamical tide (radiative damping; WRs? RGs?):

$$t_{sync} = \frac{2^{-5/3}}{5q^2(1+q)^{5/6}E_2} \left(\frac{R^3}{GM}\right)^{1/2} \frac{I}{MR^2} \left(\frac{a}{R}\right)^{17/2}$$

Zahn '75, '77

$\tau_{\rm A} = \frac{L\sqrt{4\pi\rho}}{R}$

Alfven timescales Alfvén synchronization timescale

Average densities:

$\rho_{\rm Fe} \simeq \frac{9}{4\pi} 10^9 {\rm g} {\rm cm}^{-3}, \ \rho_{\rm C} \simeq \frac{9}{4\pi}$

• Timescales:

Final Magnetic Field	$ au_{ m A,He}$	$ au_{ m A,C}$	$ au_{ m A,Fe}$
[Gauss]	[Seconds]	[Seconds]	[Seconds]
10^{15}	2.5×10^5	5.5×10^3	10^{2}
10^{12}	2.5×10^8	$5.5 imes 10^6$	10^{5}
10^{10}	2.5×10^{10}	$5.5 imes 10^8$	10^{7}

Moreno Méndez, 2014

$$\frac{3}{4\pi} 10^7 \text{g cm}^{-3}, \ \rho_{\text{He}} \simeq \frac{6}{4\pi} 10^4 \text{g cm}^{-3}$$

Stellar spin up through tides

XB properties

Name	$M_{BH,2}$	$M_{d,2}$	$M_{BH,now}$	$M_{d,now}$	Model	Measured	$P_{Orbit,now}$	$E_{\rm BZ}$
	$[M_{\odot}]$	$[M_{\odot}]$	$[M_{\odot}]$	$[M_{\odot}]$	$a_{\star,2}$	a_{\star}	[days]	$[10^{51} \text{ ergs}]$
	AML: with main sequence companion							
J1118+480	~ 5	< 1	6.0 - 7.7	0.09 - 0.5	0.8	-	0.169930(4)	~ 430
Vel 93	~ 5	< 1	3.64 - 4.74	0.50 - 0.65	0.8	-	0.2852	~ 430
J0422+32	6 - 7	< 1	3.4 - 14.0	0.10 - 0.97	0.8	-	0.2127(7)	$500 \sim 600$
1859 + 226	6 - 7	< 1	7.6 - 12		0.8	-	0.380(3)	$500 \sim 600$
GS1124-683	6 - 7	< 1	6.95(6)	0.56 - 0.90	0.8	_	0.4326	$500 \sim 600$
H1705 - 250	6 - 7	< 1	5.2 - 8.6	0.3 - 0.6	0.8	-	0.5213	$500 \sim 600$
A0620-003	~ 10	< 1	11.0(19)	0.68(18)	0.6	0.12 ± 0.19	0.3230	~ 440
GS2000+251	~ 10	< 1	6.04 - 13.9	0.26 - 0.59	0.6	-	0.3441	~ 440
	Nu: with evolved companion							
GRO J1655-40	~ 5	1 - 2	5.1 - 5.7	1.1 - 1.8	0.8	0.65 - 0.75	2.6127(8)	~ 430
4U 1543-47	~ 5	1 - 2	2.0 - 9.7	1.3 - 2.6	0.8	0.75 - 0.85	1.1164	~ 430
XTE J1550-564	~ 10	1 - 2	9.68 - 11.58	0.96 - 1.64	0.5	0.49 ± 0.13	1.552(10)	~ 300
GS 2023+338	~ 10	1 - 2	10.3 - 14.2	0.57 - 0.92	0.5	-	6.4714	~ 300
XTE J1819-254	6 - 7	~ 10	8.73 - 11.69	5.50 - 8.13	0.2		2.817	$10 \sim 12$
GRS 1915+105	6 - 7	~ 10	14(4)	1.2(2)	0.2	> 0.98	33.5(15)	$10 \sim 12$
Cyg X-1	6 - 7	$\gtrsim 30$	~ 10.1	17.8	0.15	> 0.97	5.5996	$5\sim 6$
Extragalactic								
LMC X-1	~ 40	~ 35	8.96 - 11.64	30.62 ± 3.22	< 0.05	0.81 - 0.94	3.91	< 2
LMC X-3	7	4	5 - 11	6 ± 2	0.43	~ 0.3	1.70	~ 155
M33 X-7	~ 90	~ 80	14.20 - 17.10	70.0 ± 6.9	~ 0.05	0.72 - 0.82	3.45	3 - 11

Lee et al. '02, Brown et al. '07, '08, Moreno Méndez '11.

On the HMXBs...

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
HMXB	$M_{\star} [\mathrm{M}_{\odot}]$	$M_{BH}~[{ m M}_{\odot}]$	q	P orb [days]	a_{\star}	E_{rot} [B]	Refs.
M33 X-7	70.0 ± 6.9	15.65 ± 1.45	10→5	3.45	0.84 ± 0.05	3,400	i, ii, iii
Cyg X-1	40^{+2}_{-2}	21.2 ± 2.2	$5 \rightarrow 2$	5.60	$> 0.9985(3\sigma)$	10,000	iv, v, vi
LMC X-1	31.79 ± 3.48	10.91 ± 1.41	7→3	3.90917	$0.92\substack{+0.05 \\ -0.07}$	3,000	vii, viii
IC 10 X-1	17 - 35	10 - 15(?)	$2 \rightarrow 1(?)$	1.45175	$\gtrsim 0.8$	> 1,300	ix, x, xi
NGC 300 X-1	26(?)	$17 \pm 4(?)$	$? \rightarrow 1.5$	1.366	> 0.8?	> 1,500?	xii, xiii
Cyg X-3	(8-15)(?)	$\lesssim (5-10)(?)$	$? \rightarrow 1.5$	0.20	$\lesssim 1?$	$\sim 5,000?$	xiv

(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
Sp.T.	$L_X \ [10^{38} \text{ erg}]$	e	V_{pec} [km s ⁻¹]	E_{bubble} [erg]	SNR?	J-S	Refs.
O(7-8)III	0.13-2.49	0.0185(77)	—	—	—	$\leq 3^{o}$	xv, xvi, xvii, xviii
O9.7Iab	0.05	0.0189	9 ± 2	$7 imes 10^{48}$	Bubble	$(10 - 20)^{o}$	xix, xx, xxi, xxii
O7III	2.3	0.0256(66)?	—	—	—	_	xxiii, xxiv, xxv
WR	0.7	_	_	_	_	_	xxvi
WR	2.6(1)	—	—	—	—	—	xxvii, xviii
WN(4-7)	0.5	-	≥ 9	—	Yes	$(> 15^{o})?$	xxix, xxx

Moreno Méndez, 2022

Candidates for GRB central engines?

- Requisite: CE after Case C mass transfer.
- OK for Massive Stars with low-mass companion (i.e., up to ~2 Msun). But there might be too much energy and the central engine may blow itself apart (HN, type lc bl) before a IGRB is produced.
- OK for Massive Stars with intermediate-mass stars (i.e., 2 to 8ish Msun).
- Not OK for Massive stars with massive companion.
 Typical BH spin: a* ~ 0.05.

BH spin up through accretion (spin up, option 2)

- Super Eddington or hypercritical accretion in HMXBs.
- Stable mass transfer needed (via RLOF? via wRLOF?)
- Obviously, too late for GRB central engine.

Hypercritical Accretion onto BHs! **CE/GE** with BHL accretion with SR Jets, Coriolis, Gradients...

López-Cámara, Moreno Méndez, De Colle, MNRAS 497, 2057, 2020

BH Energy

Kick the BH off center! A series of kicks? (Seems to work for NSs) • A long single kick: SASI with m=1 Conservation of E, J (It's a massive BH!)

Blondin & Mezzacappa, 2007.

Energy necessary to spin up a BH during CC with a SASI:

Moreno Méndez & Cantiello, 2016
Discipation by GW production.
T/|W| ~ 0.14 (secular instabilities) or
T/|W| ~ 0.27 (dynamical instabilities).

Yet even more important...

O'Connor & Ott, 2011

R_sasi ~100 km, is not a large lever arm.

Moreno Méndez & Cantiello, 2017

Accretion after core collapse rapidly decreases a*.

- RLOF, CE, and/or Grazing Envelope (GE) stages could radiate away with extreme luminosities (10e40 to 10e46 erg/s).
- This is the ULX or even HLX range.
- Most likely intermittent as the MT material is accreted or ablated away.
- A few months after 2207.14765 (MM 2022), confirmation came of Cyg X-3 being an off axis ULX (2303.01174; Veledina et al. 2023).

Observed dynamical properties of Cyg X-3

Relevant references			
Reid & Miller-Jones 2023			
* MM 2022, Veledina et al. 2023			
Koljonen & Maccarrone 2017			
Koljonen & Maccarrone 2017			
Koljonen & Maccarrone 2017			
Bhargava et al. (2017)			
Bhargava et al. (2017)			
Reid & Miller-Jones 2023			

Blaauw-Boersma kick

Vsys (Recircularized)

$$P_2 = \left(1 + \frac{\Delta M}{M_{BH} + m}\right)$$

$$V_{\text{Sys}} = \left(\frac{\Delta M}{M_{BH} + m}\right) V$$

Dynamical properties of Cyg X-3

Parameter	Value	Relevant references
Distance	9.7 kpc	Reid & Miller-Jones 2023
$L_X (ULX!)$	$\sim 10^{40} \text{ erg/s}$	* MM 2022, Veledina et al. 2023
WR type	WN 4-5	Koljonen & Maccarrone 2017
WR mass *	$\sim (11 - 14) M_{\odot}$	Koljonen & Maccarrone 2017, MM 2024
BH mass	$\sim 14 \mathrm{M}_{\odot}$	MM 2024
P (days)	~ 0.2	Bhargava et al. (2017)
\dot{P}	$\sim 5.4 \times 10^{-10}$	Bhargava et al. (2017)
v_{pec}	$\lesssim 20~{ m km/s}$	Reid & Miller-Jones 2023
a_{\star}	~ 1	MM 2024
E_{rot}	\sim 5,000 bethe	MM 2024

Work in progress: MM 2024

Conclusions:

- Mass loss to 1st SN restricted to less than a couple solar masses.
- Ist-BH in Cyg X-3 mass more than doubled, spin brought from a* ~ 0 to a* ~ 1 by accretion.
- WRs are expected to form a 2nd BH with $a^* > 0.5$: IGRB/HN !!
- Binaries could survive HN explosion if 1st BH is, indeed, massive and P << 1 day; if so, GW merger candidates.
- WR-HMXBs are likely progenitors of IGRB/HN if P < 1.5 day.
- Goldilocks: Probably luminous to sub-luminous.
- 3 to 4 known candidates nearby.

Work in progress: MM 2025

- Reconstructing the pre-explosion orbits in BH binaries allows for an estimation of the Kerr parameter of the BH at the time it was formed.
- •Angular momentum extracted to power a GRB/HN may reduce this value.
- Accreting mass from the companion may increase the observed value.

