

Diego López-Cámara (ICN-UNAM)

+ Leonardo Garcia-Garcia (IA-UNAM), Davide Lazzati (OSU)

(García-Garcia et al. 2023, 2024)

SGRBs (basics)...

Medium:

 $\rho \sim 10^{10-14} g \ cm^{-3}$ $B \sim 10^{12-15} G$

(Paczynski 1986; Eichler et al. 1989; Ciolfi et al. 2017)

Jet:

 $L_{iso} \sim 10^{49-52} \ {\rm erg \ s^{-1}}$ (Ghirlanda et al. 2009, Berger 2013)

*T*₉₀ < 2 *s* (Kouveliotou et. al. 1993)

 $\Gamma_0 \sim 5 (\Gamma_\infty \sim 400)$ (Piran 1999, Ghirlanda et al. 2018)

 $\theta_j \sim 5^\circ - 15^\circ$ (Fong et al. 2015)

t = 0.001 s

(Lazzati, et al. 2017)

(Ciolfi, et al. 2017)

B_m in SGRBs (sims)...

Propagation of a SGRB-jet through a $\rho \uparrow \uparrow$ and $B \uparrow \uparrow$ media

ofine ROYAL ASTRONOMICAL SOCIETY MNRAS 519, 4454–4460 (2023) Advance Access publication 2023 January 06

https://doi.org/10.1093/mnras/stad023

Dynamics of a relativistic jet through magnetized media

Leonardo García-García ⁰, ¹* Diego López-Cámara ⁰²* and Davide Lazzati ⁰³ ¹Instituto de Astronomía, Universidad Nacional Autónoma de México, 04510 Ciudad de México, CDMX, México ²Instituto de Astronomía, Cátedras CONACyT – Universidad Nacional Autónoma de México, AP 70-264, CDMX 04510, México ³Department of Physics, Oregon State University, 301 Weniger Hall, Corvallis, OR 97331, USA

Magnetized medium (static)

Relativistic and collimated jet (non magnetized)

2.5 RMHD simulations

B_m in SGRBs (sims setup)...

Medium:

 $\rho \propto R^{-3}$ $B \propto R^{-1.5}$ (Ciolfi et al. 2017-ish)

Jet:

$$L_j \sim 10^{50} \ erg \ s^{-1}$$

$$\Gamma_0 = 5$$

$$\theta_j = 10^{\circ}$$

$$d_{co} = 200 \ km$$

$$(\beta = P_g/P_B)$$

PLUTO code (Migone et al 2007)

(12 RMHD models)

Name
$$\beta_m$$
ResolutionControl ∞ LR, MR, SR, andHR β_m HRP0.10.1SRP0.50.5SRP1.01.0SRP5.05.0SRP2010SRP2525SRP5050SRP7575SRP100100SRP500500*SRP1e4104SR

B_m in SGRBs (sims results I)...

B_m in SGRBs (sims results II)...

B_m in SGRBs (analytic)...

Propagation of a SGRB-jet through a $\rho \uparrow \uparrow$ and $B \uparrow \uparrow$ media

Based on Lazzati & Perna (2019): SGRB though a non-B medium.

Based on pressure balances between: jet, cocoon, and medium.

Static medium with a poloidal B field.

B_m in SGRBs (analytic setup)...

 v_{jh} , $heta_j$, $heta_c$, E_c ?

B_m in SGRBs (analytic results I)...

$$v_{jh}$$
 , θ_j , θ_c , E_c ?

$$\boldsymbol{v}_{jh} = c \left(\frac{1 - \sqrt{1 - \left(1 - \frac{\rho_m c^3 r^2 \Omega_j}{L_j}\right) \left(1 - \frac{P_{m,B} \Omega_j c}{L_j}\right)}}{1 - \frac{\rho_m c^3 r^2 \Omega_j}{L_j}} \right) \qquad \text{with}$$

with
$$P_{B,m} = \frac{B^2}{8\pi}$$

$$\theta_{j} = acos \left(1 - \frac{3\pi P'_{B} L_{j} sin^{2} \theta_{j,in}}{4c \left[2L_{j} \rho_{m} v_{jh} + 3\lambda \pi r^{2} P_{m,B} P'_{B} \right]} \right)$$

$$\theta_{c} = acos\left(1 - \frac{\pi P'_{B}}{2\rho_{m}v_{jh}^{2}}\right) \quad \text{with } P'_{B} = P_{m,B}(1-\lambda) + \left[\left(P_{m,B}(1-\lambda)\right)^{2} + \frac{4\rho_{m}L_{j}v_{jh}}{3\pi r^{2}}\right]^{1/2}$$

$$E_c = L_j \left(t - \frac{r_{jh}}{c} \right)$$

B_m in SGRBS (analytic results II)...

B

 ${\sf E}_{\sf B}/{\sf E}_{\sf Tot}$

0.73

0.96

0.21

$$v_{jh} = v_{jh}(B,\lambda)$$

$$\theta_{j} = \theta_{j}(B,\lambda)$$

$$\theta_{c} = \theta_{c}(B,\lambda)$$

$$E_{c} = E_{c}(B,\lambda)$$

$$u_{jh} = v_{jh}(B,\lambda)$$

$$u_{$$

GRB&CE24 Diego Lopez-Camara

edium

et al. 2017-ish, GG23)

$$\rho_m \propto R^{-3}$$

$$B_m \propto R^{-1.5}$$

t

-ish, GG23)

$$L_{j} = 10^{50} \ erg \ s^{-1}$$
$$\Gamma_{j} \sim 5$$
$$\theta_{j} \sim 10^{\circ}$$

10/14

B_m in SGRBs (analytic results II)...

(more...)

B_m in SGRBs (analytic results IV)...

2D RHD simulations.

Pluto RMHD code (Mignone et al. 2012).

Only the $P_{m.B}$ and not its geometry

B_m in SGRBs (analytic results V)...

Simulations: dots

Trend-line: black dashed

Analytic: red/blue line

λ~0.1

Extra:

GG2023 with poloidal *B* shows good agreement with our results.

Sims trendline: $\uparrow B_m \Rightarrow \theta_c \uparrow$

Sims trendline:

$$\uparrow B_m \Rightarrow \theta_j \uparrow$$

Sims trendline:

$$\uparrow B_m \Rightarrow RSs \downarrow$$

Sims trendline:

$$\uparrow B_m \Rightarrow E_c \uparrow$$

Summary...

2.5D RMHD simulations:

 B_m affects the SGRB

Recollimation shocks diminish

GRB&CE24 Diego Lopez-Camara

Analytic model:

 B_m and λ affect the SGRB

λ~0.1

Thanks

Gracias

(see you here again in X years?)

