Late Engine Activity: An Alternative Scenario for the Blue Kilonova

Hamid Hamidani, Shigeo Kimura, Masaomi Tanaka, & Kunihito Ioka

Based on: https://arxiv.org/abs/2312.06286 https://arxiv.org/abs/2406.14366

GRBs and central engine powered transients - December 2-6, 2024, Mexico

Theory

Neutron Star Merger

Old Paradigm [sGRBs & KN]

Observation 1. Surprisingly blue early KN 2. Late engine activity

GW170817 [& GRB170817A]

Event rate (counts/s)

Credit: Abbott et al. 2017

Fact 1: Blue kilonova [GW170817]

Credit: Soares-Santos et al. and DES Collaboration; Drout et al. 2017

Fact 1: Blue kilonova [GRB211211A]

Credit: Troja et al. 2022; Rastinejad et al. 2022

Fact 2: Late engine activity

Fact 2: Late engine activity

Credit: Kisaka et al. 2017

Fact 2: Late engine activity [in GeV]

Motivation: How does such late engine activity affect the KN?

Observations: t & L

Observations: θ_{jet}

Analytic jet breakout time

$$t_b \sim 18 \text{ s} \left(\frac{\beta_m}{0.35}\right)^2 \left(\frac{M_e}{0.05M_{\odot}}\right) \left(\frac{\theta_0}{6^{\circ}}\right)^2 \left(\frac{L_{iso,0}}{10^{49.5}}\right)^{-1}$$

Three engine phases:Prompt($\sim 10^{53}$ erg/s)Extended($\sim 10^{49}$ erg/s)Plateau($\sim 10^{47}$ erg/s)

Three jet models:Narrow ($\theta_0 = 3^\circ$)Typical ($\theta_0 = 6^\circ$)Wide ($\theta_0 = 15^\circ$)

Cooling emission

Magnitudes [UV]

Magnitudes [Opt]

Why brighter w/ the late jet?

- 1. Blue KN peaks at $\sim 1 \text{ day}$ ($\sim 10^5 \text{ s}$)
- 2. The system is expanding
- e.g., Prompt jet (breakout) timescale 1 s
 - By $\sim 10^5$ s the volume ($\propto t^3$) is 10^{15} times larger!
 - Adiabatic cooling $\propto V^{-\frac{1}{3}} \propto t^{-1}$
 - i.e., only $\sim 10^{-5}$ of prompt jet's energy remains (to be radiated)

1% of the jet energy injection ~ 10^4 s later $\Rightarrow \sim 10^2$ times brighter cooling emission

Prediction: Thermal soft X-ray [off-axis & failed sGRBs]

Detection rate [in 0.1 – 3 keV] $R_{X, \text{ cocoon }} \sim 2.1^{+3.2}_{-1.6} \times \left[\frac{D}{1 \text{ Gpc}}\right]^3 \text{ yr}^{-1}$

Expected for off-axis & failed sGRB events!
Perhaps, some of EP's recent faint X-ray events?

New Paradigm

Summary

Late engine activity is ubiquitous in sGRB extended emission & plateau emission

With late engine shock heating is much more effective $\sim 10^2$ times; due to the heating at larger radius, hence much less effective adiabatic cooling.

Predict an X-ray transient from the late jet/outflow

Detectable with with Einstein Probe $\sim 1/yr$ for off-axis & failed sGRBs!

Future early follow-up observations are key

 \lesssim day follow-up observations of GW-sGRB events will be decisive

GRB211211A's early Blue KN

Only the central engine can explain it

