

Overview

1) Disk Outflows in NS Mergers: r-process production

2) Disk Outflows in Collapsars: dynamics

3) Disk Outflows in Collapsars: nucleosynthesis

r-Process Nucleosynthesis

~50% of elements heavier than Zinc (Z=30)Nuclear Chart & Solar System abundances: 120 100 80 Proton number (Z) 60 log(T_gs⁻¹) 1.0 0.5 40 0.0 -0.5 -1.0 20 -1.5 -2.0 -2.5 0₀ 80 100 120 140 160 20 40 60 Neutron number (N)

 $t_{\rm n-capture} \ll t_{\beta-{\rm decay}}$

Astrophysical sites:

- 1) Neutron Star Mergers
- 2) Massive Star Explosions

Möller, Nix, & Kratz (1997)

Neutron Star Mergers: Overview

RF & Metzger (2016)

Accretion Disk Outflow

Slow evolution: neutrino reprocessing.

For GW170817 parameters, dominates the ejecta (0.05 - 0.10M_{sun})

Disk is embedded in a low-density medium: easy to eject mass.

Need 3D MHD for:

- MRI turbulence
- outflow speeds consistent with observations

RF & Metzger (2013) Just et al. (2015) Fujibayashi et al. (2017) Haddadi et al. (2021) Setiawan et al. (2005) Lee, Ramirez-Ruiz, & Lopez-Camara (2009)

Metzger (2009)

Disk Outflow in 3D MHD

Adapted the FLASH4.5 public code to do:

- 1) 3D MHD in non-uniform spherical coordinates
- 2) Include a neutrino-leakage scheme
- 3) EOS with wide range of density
- Evolved disk around hypermassive NS for ~1-2 s:
- variable HMNS lifetime
- different initial B field geometry

Obtained production of all r-process elements and speeds compatible with GW170817

Combi & Siegel (2023), Kiuchi et al. (2023), Curtis+ (2024) Siegel & Metzger (2017), RF, Tchekhovskoy+ (2019), Miller+ (2019), Hayashi+ (2022), Just+ (2022), Janiuk & James (2022)

Mass number. A

Fahlman, RF, & Morsink (2023)

Progenitor rotation: BH accretion disk

Accretion flow circularizes at r~rcirc

MacFadyen & Woosley (1999)

 $r_{\rm circ} \simeq \frac{j^2}{GM}$

If neutrino cooling is important: **collapsar**

Candidate r-process site due to neutronization, short delay time. Also engine for Ic-BL SNe associated with long GRBs (need large ⁵⁶Ni).

(Long history of work in the GRB/SN context)

Progenitor rotation: BH accretion disk

Accretion flow circularizes at r~rcirc

Differences with NS merger disks:

1) Accretion time

- 2) Confining ram pressure
- 3) BH mass change

4) Self-gravity

MacFadyen & Woosley (1999)

Collapsar Disk Evolution

Global viscous hydrodynamic simulations (no jet):

- entire star from core-collapse to shock breakout
 GR1D from pre-supernova to BH formation
 FLASH 2D for disk formation until shock breakout
- neutrino emission/absorption & nuclear network.

Coleman Dean & RF (2024a)

Collapsar Disk Evolution

- Self-consistent disk formation
- Confined by supersonic flow: shock wave
- Neutrino cooling phases lasts 2-5 s
- Evolve ADAF phase past shock breakout ~100 s

also Just et al. (2022), Fujibayashi et al. (2022,2023)

previous work by Harikae et al., Lee et al., Lopez-Camara et al., Aloy & Obergaulinger, Sekiguchi & Shibata, and more

Dean & RF (2024a)

Disk Explosion

The disk undergoes neutrino cooled phase for ~2s, the transitions into advective (ADAF), resulting in rapid expansion.

Dean & RF (2024a)

Dean & RF (2024b)

Outflow Properties

Neutron rich matter is quickly accreted by the BH and none of it ejected.

Need large-scale B-field for the Lorentz force to eject matter during neutrino-cooled phase.

R-process Yield

Only the model with lowest viscosity yielded first r-process peak elements.

Models that reached A~200 did so along a proton-rich path: the rp-process (in small amounts).

Bulk Ejecta Properties & Alpha Element Yield

Model	$M_{ m ej}~({ m M}_{\odot})$	$K_{\rm ej}~(10^{51}{\rm ergs})$	$K_{\infty} (10^{51} \mathrm{ergs})$	$\langle v_{\infty} \rangle \ (10^3 \mathrm{km/s})$	$Y_{ m e,min}(t_{ m max})$	$M_{\rm ^{56}Ni}~({ m M}_{\odot})$	$t_{\rm peak} \ ({\rm days})$
16TI_SFHo	8.19	9.07	9.20	8.7	0.498	1.28	44.7
16TI_SFHo_ $lpha$ 01	8.97	2.39	2.41	4.8	0.499	0.29	63.1
$16TI_SFHo_lpha001$	7.93	4.34	4.37	6.0	0.481	0.81	52.9
16TI_DD2	9.17	3.67	3.70	5.6	0.500	0.63	59.2
350C_SFHo	15.1	9.45	10.6	7.7	0.497	1.39	64.3

Dean & RF (2024a)

Dean & RF (2024b)

Summary

- 1) While both NS merger and Collapsar disks produce neutron-rich material, they differ fundamentally in their ability to eject it
- 2) Collapsar Disk Outflows alone can explode the star robustly with E $\sim 10^{52}$ erg
- Collapsars eject little neutron-rich mass in viscous hydrodynamics. Only 1st r-process peak material with α = 0.01, nothing for higher α. Need large-scale B for outflows during the neutrino-cooled phase.
- Collapsar disks easily eject ~1 M_{sun} of ⁵⁶Ni, well-mixed. Very promising as Ic-BL engines.

Thanks to:

