Very-high-energy emission from GRBs: status and perspectives

Alessio Berti Max Planck Institut für Physik

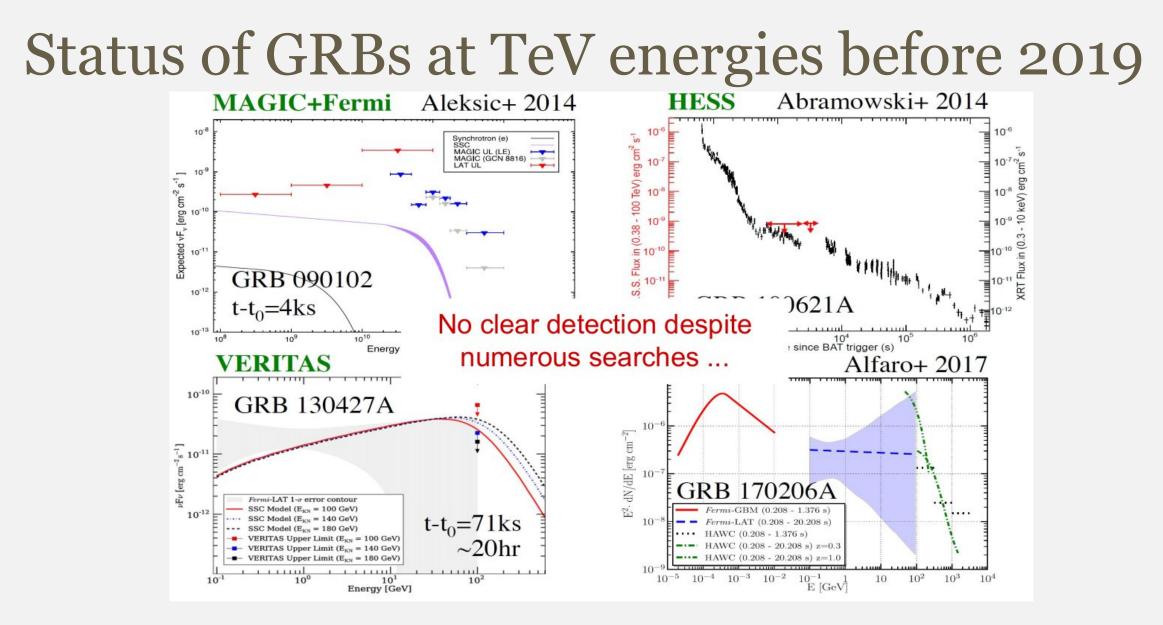
Where do we stand with this talk

Commonly, GRBs history can be divided in eras:

- 1. "dark" era (1973-1991): not much information
- 2. BATSE era (1992-1996): first spatial distribution
- 3. BeppoSAX era (1997-2000): afterglow discovery and first host galaxies identifications
- 4. HETE-2 era (2001-2004): long GRBs and association with supernovae
- 5. Swift era (2004-present): early afterglow, short GRB study
- 6. Fermi/AGILE era (2008-present): high-energy emission from GRBs

7. IACTs/EAS era (2019 - ?): TeV emission from GRBs

TeV instruments (at least some of them :))

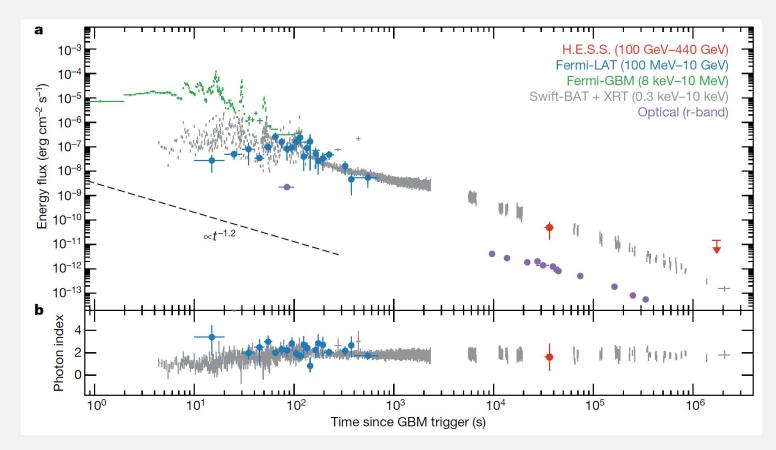

Why observations of GRBs at VHE?

- Why is the follow-up of GRBs at very high energies (VHE, E>100 GeV) so important? There were/are many key questions:
 - do GRBs emit at VHE?
 - is VHE emission from GRBs energetically relevant?
 - what is the emission process or processes?
 - can this emission process contribute also at lower energies?
 - is there VHE emission in both the prompt and the afterglow?
 - do both short and long GRBs have VHE emission? If they do, are the properties of the emission similar?
 - ...
 - additionally, hints from some Fermi-LAT detected GRBs of an additional emission component at higher energies

Challenges of observations of GRBs at VHE

However, there are some challenges (instrument/observation wise)...

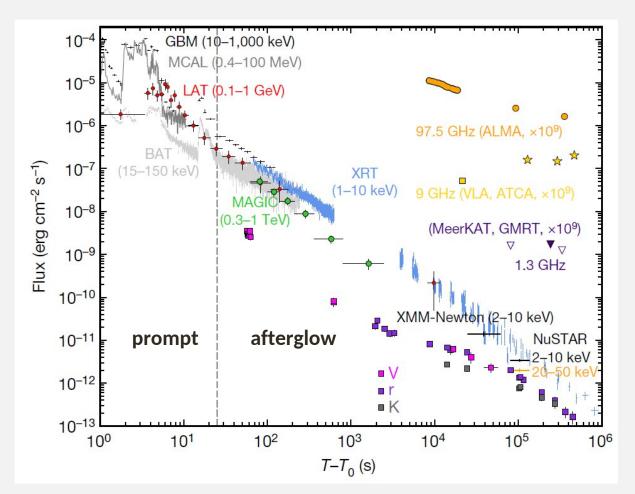
- for both IACTs and EAS
 - strong EBL absorption (GRBs at typical moderate-high redshift, stronger absorption in VHE range)
- for IACTs
 - small FoV
 - need to repoint the telescopes --> delay wrt GRB onset
 - reduced duty cycle
- for EAS
 - relatively high threshold (hundreds of GeV)
 - reduced sensitivity for short timescale events


3rd December 2024

GRBs detected at TeV energies

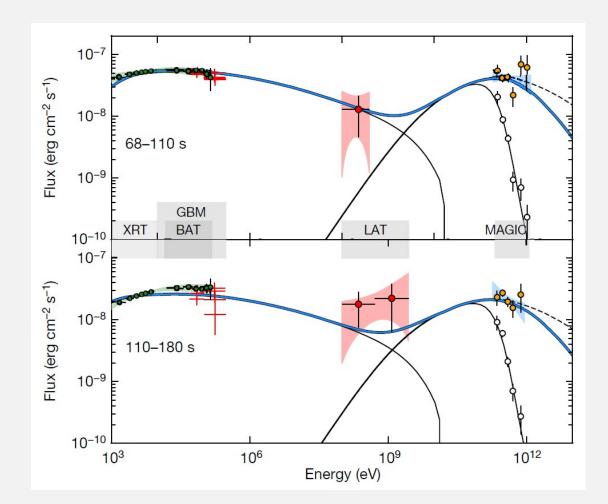
- A hunt going on since ~2 decades (at least for IACTs), finally getting the reward after several trials
- Now we have 5 detected GRBs:
 - GRB 180720B (H.E.S.S.)
 - GRB 190114C (MAGIC)
 - GRB 190829A (H.E.S.S.)
 - GRB 201216C (MAGIC)
 - GRB 221009A (LHAASO)
- All detected GRBs are of the long class
 - for the short class, we have a strong hint from the short GRB 160821B by MAGIC
 - kilonova associated --> interesting prospects for joined GW/GRB detection in next LIGO-Virgo-KAGRA observation run

GRB 180720B


- Bright long GRB
 - T₉₀~48.9 s
 - E_{iso}~6x10⁵³ (50-300 keV)
 - z=0.653
- Follow-up by H.E.S.S. at T_0 +10.1h for 2 hours, detection at 5σ level
- Flux level for 100 GeV < E < 440 GeV similar to that in X-ray band
- Synchrotron self-Compton (SSC) as possible emission scenario

Nature 575, 464-467 (2019)

GRB 190114C

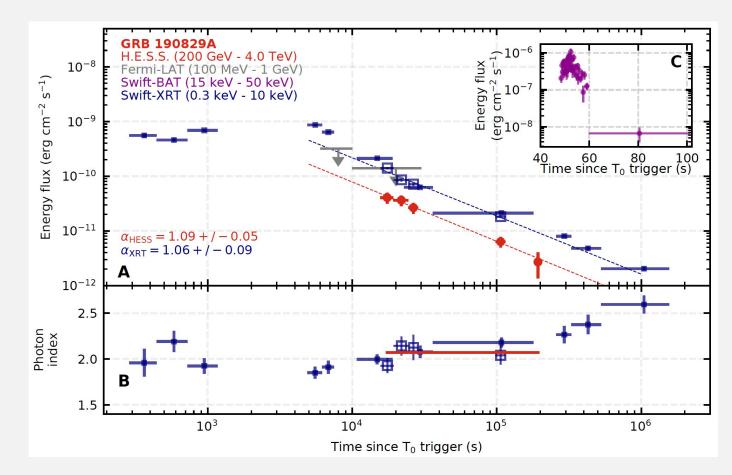

- Bright long GRB
 - T₉₀~360 s
 - E_{iso}~3x10⁵³ (1-10000 keV)
 - z=0.4245
- Follow-up by MAGIC from T_0 +57s for 4.4h hours, detection at 50 σ level in the first 20 minutes above 300 GeV up to 1 TeV
- Flux level between 200 GeV and 1 TeV similar to that in X-ray band
- Flux decay in TeV and X-rays is similar, link between the two processes

Nature 575, 455-458 (2019) & Nature 575, 459-463 (2019) GRB+CE2024

GRB 190114C

- Energies of photons detected by MAGIC well above the synchrotron burnoff limit for a one zone model (<~ 100 GeV for all the MAGIC observation duration)
 - emission process cannot be synchrotron!
- MAGIC TeV data well described by SSC process, with Klein-Nishina and internal g-g absorption considered
 - possibility of fitting only one synchrotron component? see GRB 190829A in the next slides
- Discovery of a new emission component in the afterglow of a GRB!
- Modeling parameters in agreement with previous GRB aferglow studies, and GRB 190114C does not seem exceptional
 - VHE emission might be common

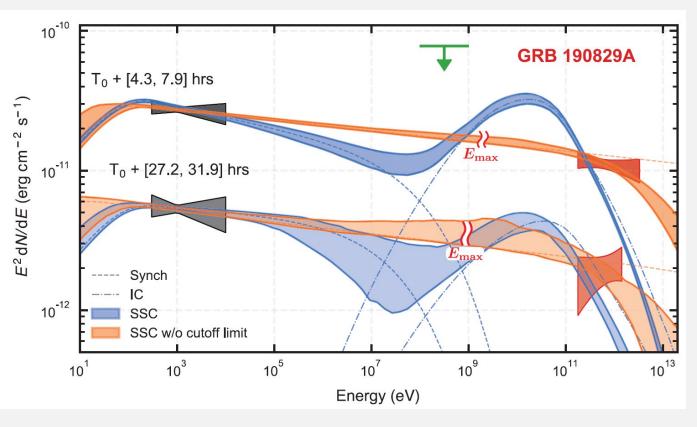
Nature 575, 455-458 (2019) & Nature 575, 459-463 (2019)


LIV with GRB 190114C

- One can use the observed LC and spectrum to build the likelihood of detecting a LIV effect at a given order n (n=1, 2) and use the maximum likelihood method to constrain the LIV parameters
- First study of this kind using GRB data at VHE, but not so sensitive (at least for n=1):
 - GRB 190114C is at moderate distance
 - it was detected during the afterglow, where LC is a decaying monotonically, so no time variability
 - comparable to past results for n=2 (here Mrk 501 is better given that $E_{max} \sim 10$ TeV)

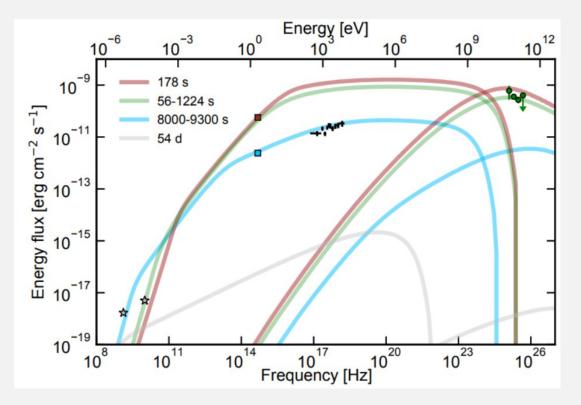
Source	Source type	Redshift	$E_{ m QG,1}$ [10 ¹⁹ GeV]	$E_{ m QG,2} \ [10^{10} { m GeV}]$	Instrument	PRL 125, 021301 (2020)
GRB 090510	GRB	0.9	9.3	13	<i>Fermi</i> -LAT ¹	-
GRB 190114C	GRB	0.42	0.58	6.3	MAGIC	←this work
PKS 2155-304	AGN	0.116	0.21	6.4	H.E.S.S. ²	
Mrk 501	AGN	0.034	0.036	8.5	H.E.S.S. ³	¹ Vasileiou $+$ (2013)
Mrk 501	AGN	0.034	0.021	2.6	MAGIC ⁴	² Abramowski+ (2011)
Mrk 421	AGN	0.031	pending	pending	MAGIC	
Crab Pulsar	Pulsar	2.0 kpc	0.055	5.9	MAGIC ⁵	3 Abdalla+ (2019)
						 ⁴ Albert+ (2008) ⁵ Ahnen+ (2017)

GRB 190829A


- Low-luminosity long GRB
 - T₉₀∼58 s
 - E_{iso} ~2x10⁵⁰ (10-1000 keV)
 - z=0.0785
- Follow-up by H.E.S.S. for 3 consecutive nights
 - T₀+4.3h for 3.6h (21.7 σ)
 - T_o+27.2h for 4.7h (5.5 σ)
 - T_o+51.2h for 4.7h (2.4 σ)
- Also in this case, decay of VHE and Xray light curves is similar

Science 372, 6546, 1081-1085 (2021)

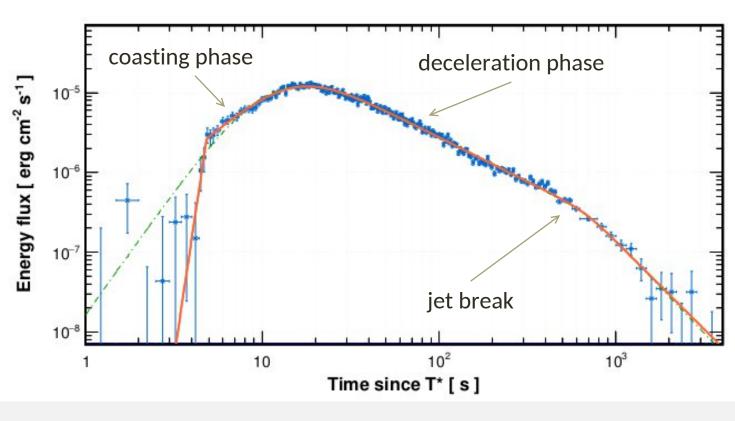
GRB 190829A


- Synchrotron proposed as the possible process responsible for VHE emission
- No maximum energy for the synchrotron process is favored at 5σ level over SSC, given the low Lorentz factor expected (and decreasing over time)
- But see e.g. Salafia et al. to see a possible modeling of VHE emission from GRB 190829A with SSC

Science 372, 6546, 1081-1085 (2021)

GRB 201216C

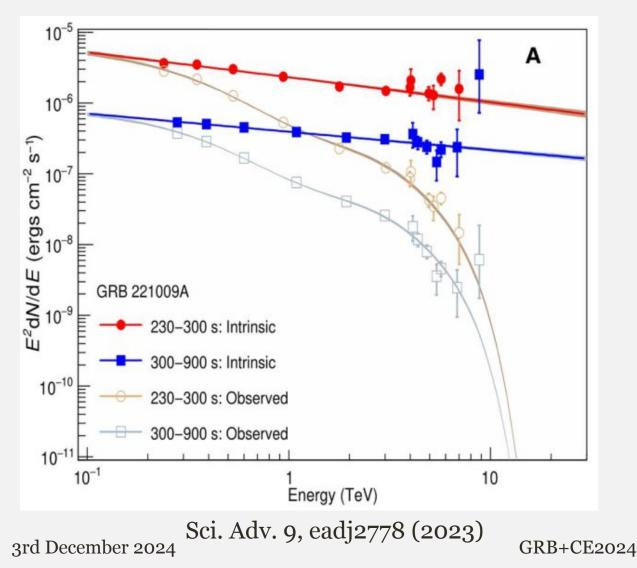
- Bright long GRB
 - $-T_{90} \sim 48 \text{ s}$
 - $E_{iso} \sim 5 \times 10^{53}$ (1-10000 keV)
 - z=1.1!!!
- Follow-up by MAGIC from ~1min after $T_{o},$ detection above 5σ
 - farthest source detected at VHE
- MWL fluxes are consistent with the synchrotron+SSC model (Miceli&Nava 2022)
 - Sub-TeV emission is well above the maximum synchrotron energy (~10 GeV at TO+~177 s)
 - No solution found with a homogeneous density medium


MNRAS (https://doi.org/10.1093/mnras/stad2958)

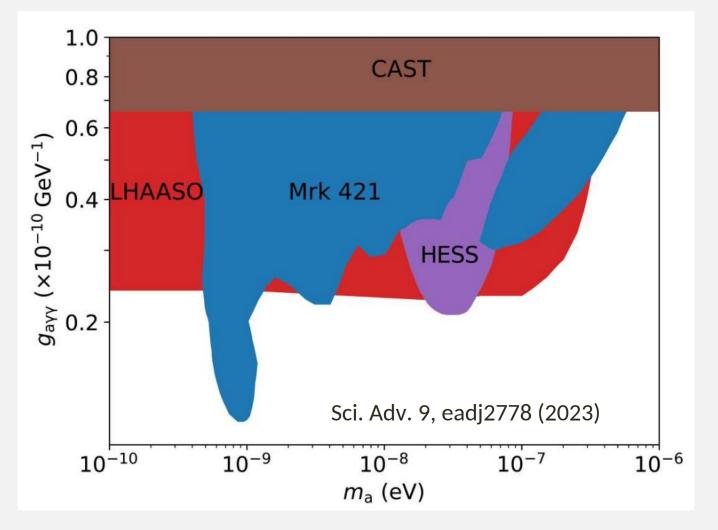
GRB 221009A: the BOAT

- Initially classified as bright galactic transient by Swift (Swift J1913.1+1946)
 - Fermi-GBM later reported a detection from a very bright and long GRB positionally consistent with the Swift alert --> renamed to GRB 221009A
- Detection by Fermi-LAT
- Very close (z=0.15) and bright (Eiso ~ $2x10^{54}$ erg) --> the brightest of all time (BOAT)
- First detection of a GRB by an extensive air shower array by LHAASO
 - no detection by HAWC (observation after ~8h from trigger)
- Would have been a perfect GRB candidate for IACTs as well, however it happened during full moon time, when usually IACTs do not operate

GRB 221009A: LHAASO


Science 380, 1390-1396 (2023)

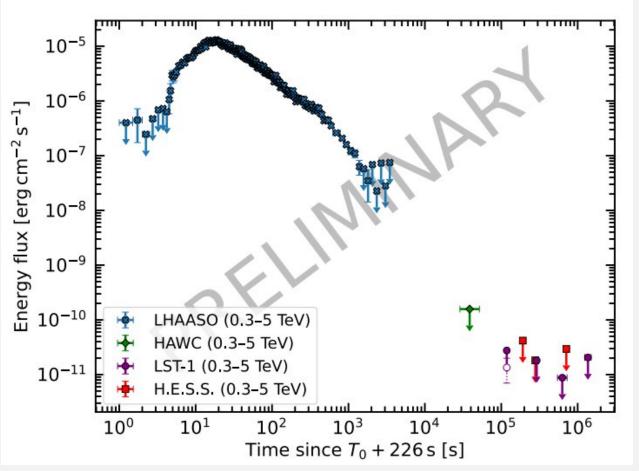
Note: T*= T0+225s


- Light curve [0.3-5] TeV is "smooth", no variability as in the simultaneous GBM data --> rise of the afterglow
- Steepening at ~T*+500s: jet break
 --> small opening angle 0.8deg
- Peak of the afterglow can be used to estimate the Lorentz factor of the GRB (~600 in this case)
- LHAASO does not detect prompt emission, pointing to high optical depth for (sub)TeV gamma rays

GRB 221009A: LHAASO

- Data from WCDA modelled within an SSC scenario
- However, also including KM2A data (up to ~10 TeV), intrinsic spectrum does not show any softening due to Klein Nishina effect
 - reverse shock contribution?
 - possible additional leptonic component in a two zone model?

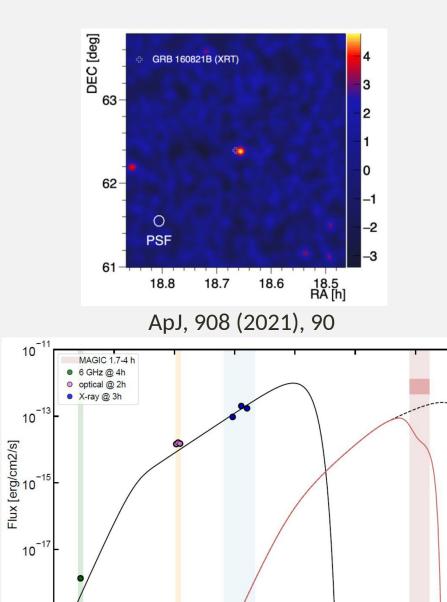
GRB 221009A: LHAASO



- Gamma rays at >10 TeV from z=0.15 should be heavily suppressed
- Possible "natural" explanations
 - lower EBL intensity in infrared range
 - misidentification of a cosmic ray background event as gamma ray
 - misreconstruction (or migration) of events
- Possible exotic explanations
 - Lorentz Invariance Violation
 - Axion-like particles

3rd December 2024

GRB 221009A: LST-1


- Light curve with LHAASO, HAWC, LST-1 and H.E.S.S.
- LST-1 performed the first follow-up among IACTs, under very strong moonlight
 - hint at ~4 sigma the first day of followup (To+1.33 days)
- LST-1 ULs are ~1 order of magnitude lower than HAWC, and at a similar level as H.E.S.S.
- For the H.E.S.S. data and interpretation, see https://iopscience.iop.org/article/10.3847/2 041-8213/acc405

GRB 160821B

- Short GRB at low redshift (z=0.16), fast follow-up by MAGIC (24s)
- Data affected by moon and partially by bad weather
- Evidence of gamma-ray signal at 3.1 sigma pre-trial, 2.9 post-trial
- Kilonova emission confirmed
- Simplest emission model (synchrotron +SSC at external forward shock) is in tension with the TeV predicted flux

10

 10^{-6}

10⁻³

 10^{0}

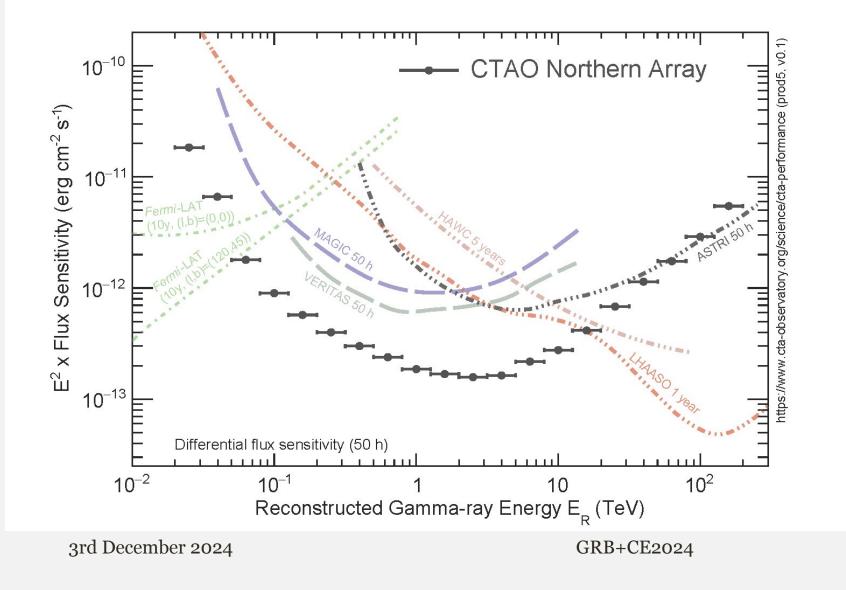
10³

Photon Energy [eV]

10¹²

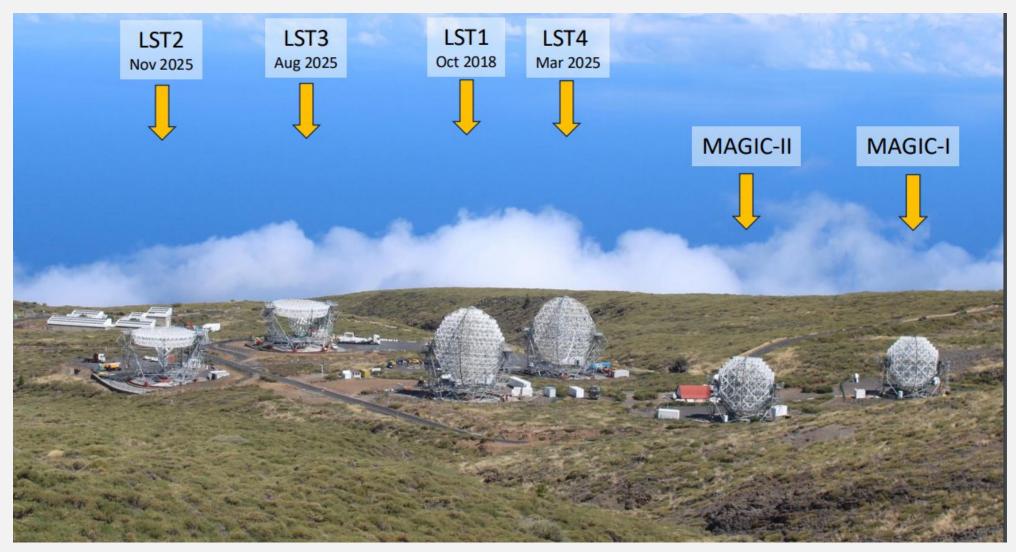
10⁶

10⁹

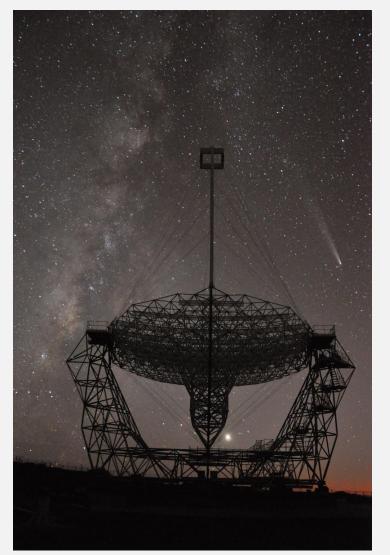

GRBs at TeV energies: what did we learn?

- 1. Continued effort pays off at the end! No GRB firmly detected in ~15 years, now 5 in ~4 years
 - certainly technical developments played a role (alert systems, improvement in the sensitivity, lowered energy threshold, ability to observe in diverse weather conditions)
 - changes in strategies e.g. observe not only close to the onset, but also much later, especially for bright events
- 2. VHE emission is there, it can be detected if GRB is relatively close
 - for the moment 4 out 5 were bright GRBs, but GRB 190829A case tells us that even dim events can be detected if z is low
- 3. VHE emission is present both in the early and late afterglow
- 4. Similarities between flux level in X-ray and VHE bands, also similar time decay
- 5. MWL data crucial for proper modeling of the emission
- 6. SSC as possible universal process to explain TeV emission or revisitation of synchrotron?
 - SSC seems to be applicable in most cases, but there can be large scatter between different modelers, who apply different assumptions

GRBs at TeV energies: next challenges

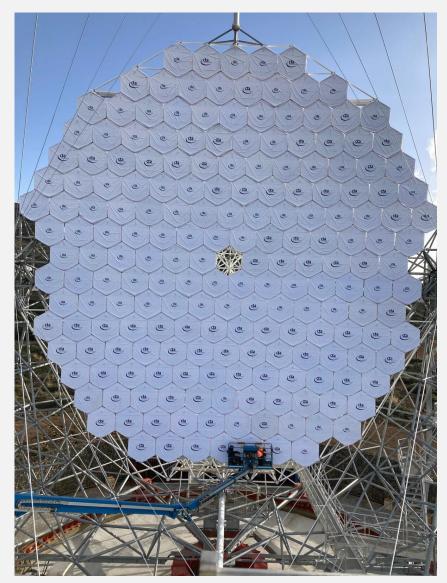

- 1. Our understanding of the afterglow emission is still uncertain despite the recent detected events
 - we need more GRBs detected at VHE! Looking forward to new facilities like the Cherenkov Telescope Array (CTA)
 - an interesting topic: X-ray flares in the afteglow
- 2. Another major breakthrough would be the detection of VHE emission during the prompt phase
 - crucial info on the emission process, still heavily debated
 - current and new ground-based wide field of view instruments (HAWC, LHAASO, SWGO) may be better suited for this task, if VHE emission is not totally suppressed
 - optical searches with MAGIC
- 3. VHE emission from short GRBs? Strong hint from GRB 160821B by MAGIC
- 4. New physics
 - Lorentz Invariance Violation (we would need a distant GRB detected in the prompt)
 - Axion-like particles (search for signatures in the spectra; GRBs detected at high redshift)
 - new constraints on EBL?

The (hopefully close, finally) future: CTA



- CTA will provide enhanced sensitivity in all energy ranges
- The most interesting range is the low energy one, where the Large-Sized Telescopes (LSTs) dominate
- 4 LSTs planned in the Northern Array, at least 2 in the Southern
- In the North: 1 LST already operative, 3 under construction
 - energy threshold can be as low as 10-20 GeV

LSTs are growing, fast

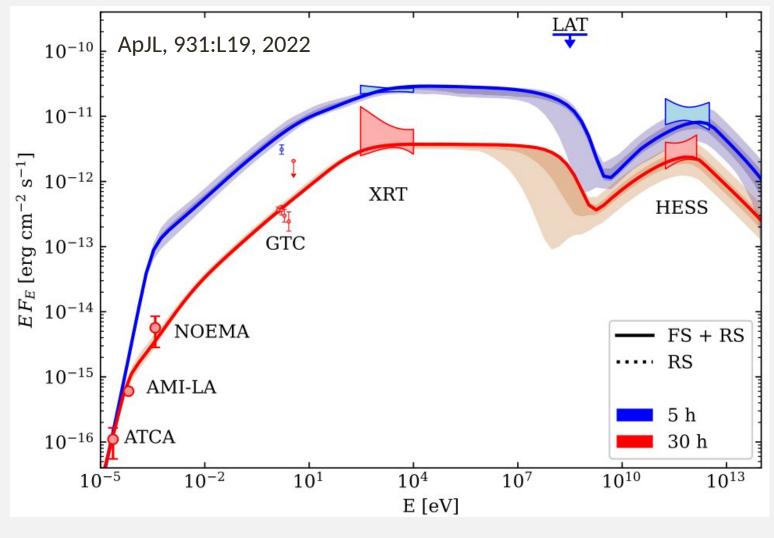

Recent milestones

<-- LST-3 arch installation (last October)

Construction is progressing well, mostly on schedule! In ~1.5y we will have 4 LSTs ready to hunt GRBs with unprecedented sensitivity!

--> LST-4 mirrors installation complete (yesterday!)

3rd December 2024


Summary

- After many years of follow-ups, the TeV window on GRBs finally opened
- Quite heterogeneuos GRBs
 - difficult to draw general conclusions, but an important playground for next detections
- Modeling/interpretation can be challenging for some of these GRBs
 - still low number of events is one of the limiting factors
 - also, MWL coverage is not always guaranteed
- Current and planned facilities at TeV energies plan to continue the extensive follow-up of GRBs: the TeV era of GRBs has just started!

BACKUP

GRB 190829A

- Possible SSC scenario suggested by Salafia et al.
- Discussed also together with VLBI data

Modeling of GRBs at TeV

Model parameters	E _k (erg)	Го	n ₀ (s=0)	A _* (s=2)	٤e	e.,	n						
Woder parameters			110 (5-0)	A* (3-2)	ce	ε _Β	р						
180720B													
Joshi et al. 2023	4.5x10 ⁵⁴	400	0.035	—	0.05	1.2x10 ⁻⁵	2.4						
Wang et al. 2019	1054	300	0.1	_	0.1	10-4	2.4						
190114C													
MAGIC et al. 2019	8x10 ⁵³	700	0.5		0.07	8x10 ⁻⁵	2.6						
Wang et al. 2019	6x10 ⁵³	300	0.3		0.07	4x10-5	2.5						
Zhang H. et al. 2020	5x10 ⁵⁴		0.1	_	0.05	5x10-6	2.6						
Asano et al. 2020	1054	600	1.0	_	0.06	9x10-4	2.3						
Asano et al. 2020	1054	300	_	0.1	0.08	1.2x10 ⁻³	2.35						
Joshi & Razzaque 2021	4x10 ⁵⁴	300		0.02	0.03	1.2x10 ⁻²	2.18						
Derishev & Piran 2021	3x10 ⁵³		2		0.11	(3-6)x10-3	2.5						
Derishev & Piran 2021	3x10 ⁵³				0.11	(3-6)x10 ⁻³	2.5						
190829A													
Salafia et al., 2022	2.5x10 ⁵³	57	0.21	_	0.03	2.5x10-5	2.01						
Zhang LL. et al., 2021	10 ⁵¹	35	2.2	_	0.32	6x10-4	2.12						
201216C													
MAGIC et al. 2023	4x10 ⁵³	180	—	2.5x10 ⁻² —	0.08	2.5x10-3	2.1						
221009A													
LHAASO 2023	1.5x10 ⁵⁵	560	0.4	_	0.025	6x10-4	2.2						