Structured Jets: Illuminating the Enigma of GRBs

Paz Beniamini – Astrophysics Research Center of the Open University (ARCO), Open University of Israel Work with: Jonathan Granot, Ramandeep Gill, Brendan O'Connor, Vikas Chand, Gal Birenbaum, Raphael Duque, Frederic Daigne, Robert Mochkovitch, Tsvi Piran and Tatsuya Matsumoto

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

Jet afterglows

- Dynamics: Self-similar blast wave ultra-relativistic blast wave driving into external density (Blandford & Mckee 76)
- Radiation: Synchrotron from electrons accelerated in the forward shock (Sari, Piran & Narayan 98)

Isotropic equivalent energy constant (up to jet break)

L×t almost constant (slightly decreasing)

Isotropic equivalent energy constant (up to jet break)

L×t almost constant (slightly decreasing)

Isotropic equivalent energy constant (up to jet break)

L×t almost constant (slightly decreasing)

Isotropic equivalent energy constant (up to jet break)

 $L \times t$ almost constant (slightly decreasing)

Shallow jets look different even on-axis

Little polarization expected for shallow jets

See talk by Gal Birenbaum

Birenbaum, ... PB... 24

Shallow jets look different even on-axis

Do shallow jets underlie the most energetic GRBs?

- Very energetic GRBs show no steep jet break until very late times (>120 days in GRB 221009)
- For a 'steep' jet, huge minimum limit on beaming corrected energy

 $E_k > 5 \cdot 10^{53} \left(\frac{t}{120 \text{ d}}\right)^{3/4} \left(\frac{n}{1 \text{ cm}^{-3}}\right)^{1/4} \text{ erg}$

A `shallow' on-axis jet, explains the spectrum and lightcurve and requires significantly less energy $\theta \propto t^{\frac{3}{8}} \rightarrow E_k \propto \theta^{2-a} \propto t^{\frac{6-3a}{8-a}} \sim t^{0.37}$

• $E_k \approx 1 - 8 \cdot 10^{52} \left(\frac{t}{120 \text{ d}}\right)^{0.37}$

O'connor, .. PB... et al. 23

Do shallow jets underlie the most energetic GRBs?

Do shallow jets underlie the most energetic GRBs?

• Other energetic GRBs follow the same trend

X-ray plateaus – Evidence for (mildly) offaxis structured GRB jets? For $\Delta \theta = \theta_{obs} - \theta_c \leq 0.5 \theta_c$ shallow phase lasts until $\Gamma(\theta_i) \approx \Delta \theta^{-1}$ $t_p = t_d(\theta_c) [\Delta \theta \Gamma_c]^{(1+2\varepsilon)/\varepsilon} \sim 10^3 \left(\frac{\Delta \theta}{0.00}\right)^{(1+2\varepsilon)/\varepsilon}$ sec; $\varepsilon = \frac{1}{2} \text{ or } \frac{3}{2}$ Wind ISM 10⁵⁰ 10⁵⁰ $\mathcal{A}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}}}}$ 10 Larger Larger viewing viewing $\Delta \theta = 0.0$ angle angle 10⁴⁸ $\Delta \theta \equiv 0.0^{-1}$ 10⁴⁸ $L_{\rm X} [{\rm erg~s^{-1}}]$ $\Delta \theta = 0.0$ $L_{\rm X}$ [erg $\Delta \theta = 0.02$ 10⁴⁶ . 10⁴⁶ $\Delta \theta \equiv 0.03$ $10^{44} \theta_j = 0.1$ $\theta_i = 0.1$ 10³ 10³ 10^{2} 10² 10⁴ 10⁴ 10⁵ 10⁵ 10^{6} t[s]t[s]

PB, Duque, Daigne, Mochkovitch 20

Time since BAT trigger (s)

Observed correlations naturally reproduced:

To first order $L_p \propto E_{\gamma} t_p^{-1}$ as observed (contrary to energy injection!)

- Fraction of bursts with plateaus naturally reproduced $\frac{\theta_{max}^2 \theta_c^2}{\theta_m^2} \sim 0.1$
 - No spectral break between plateau and post-plateau light-curve

- Γ_0 decreases when θ increases
- In a wind medium, above v_c , plateau due to deceleration
 - Wide range of plateau durations and luminosities
- Narrow range of jet structure parameters with consistent plateaus: $3\beta \lesssim \alpha \lesssim 4\beta$

• If plateau dominated by core material, correlation with E_{γ}

unexpected ($L_p \propto E_k^{1-\frac{p}{2}}$)

- Much flatter plateaus
- Distinct reverse shock and polarization signatures

Evidence for (mildly) off-axis structured GRB jets?

 Same interpretation for plateaus explains X-ray flares as de-boosted off-axis prompt emission spikes

Duque, PB, Daigne, Mochkovitch 2022

Evidence for (mildly) off-axis structured GRB jets?

Same interpretation for plateaus explains X-ray flares as de-boosted off-axis prompt emission spikes

Duque, PB, Daigne, Mochkovitch 2022

Kill two birds with one stone?

Constraints on structure around the core from cosmological GRBs

However: Relevant mostly for early flares – difficult to separate from late prompt, need to select for spectral properties

Peculiar features in GRB afterglows may hint at nature of dissipation

• Photospheric models: $\Delta t \propto L/(1+\sigma)\Gamma^5$ -> flares by moderate Γ material

$$\frac{\Delta t_{flare}}{\Delta t_{GRB}} = \left(\frac{L_f}{L_{GRB}}\right) \left(\frac{1 + \sigma_{GRB}}{1 + \sigma_f}\right) \left(\frac{\Gamma_{GRB}}{\Gamma_f}\right)^{\xi}$$

- Predict thermal spectrum during flare (explains low optical flux)
- Late appearance despite early production (larger energy reservoir)

PB & Kumar 2016

Current cosmological GRBs near on-axis

1. Early X-ray afterglow energy correlated with prompt γ -rays But $L_X(t < t_{dec})/E_{\gamma} \propto \Gamma^{10-11} E_{iso}^{0-1/3}$ So angular structure of Γ + GRBs viewed much beyond jet core -> **ruled out**

2. Far off-axis GRBs overproduce bursts below luminosity function peak

3. GRB afterglows observed at large angles have extended shallow decays / plateaus lasting tens of days Unlike *any* known cosmological GRB to date, which decay at least as fast as $t^{-1/2}$

See talk by Brendan O'Connor

Granot & Gill 20 PR

PB & Nakar 19, O'Connor, PB & Gill 24

Far off-axis (steep) jets

Far off-axis (steep) jets

 θ

Energy decreases with θ , but material at $\theta \ll \theta_{obs}$ strongly debeamed Angle dominating emission is ~ θ_{min} where $\Gamma_0(\theta_{min})(\theta_{obs}-\theta_{min})=1$

PB, Granot & Gill 20

Energy decreases with θ , but material at $\theta \ll \theta_{obs}$ strongly debeamed Angle dominating emission is ~ θ_{min} where $\Gamma_0(\theta_{min})(\theta_{obs}-\theta_{min})=1$

- Analytic treatment matches numerics
- $\theta_{min} < \theta_{obs}$ initially constant. Eventually declines as $\theta_{min} \propto t^{-3/a}$

a = PL index of energy angular profile

A critical angle θ_* is defined such that $\Gamma_0(\theta_*)\theta_*=1$

A. $\theta_{obs} < \theta_* \rightarrow \Gamma_0(\theta_{obs})\theta_{obs}$ >1 Relativistic beaming important from t=0 Initially dominant material decelerates and dominates flux before lower latitudes become exposed and take over

B. $\theta_{obs} > \theta_* \rightarrow \Gamma_0(\theta_{obs})\theta_{obs}$ <1 Initially dominant angle is significantly smaller than θ_{obs} and gradually decreases with time

Future prospects – off-axis afterglows Case A $\theta_{obs} < \theta_*$ – Double peaked light-curve

- Analytic treatment reproduces numerical simulations and provides easy to use and intuitive tools
- Analytics reproduce Temporal slopes, critical times and critical fluxes
 - n, E, ε_e , ε_B highly degenerate

• $q \equiv \frac{\theta_{obs}}{\theta_c}$, a, b, $\xi_c \equiv (\Gamma_c \theta_c)^2$ robustly constrained from analytics

$$q = \left(\frac{F_{1\rm pk}}{F_{\rm pk}}\right)^{\frac{4}{8-a(3+p)}} \left(\frac{t_{\rm pk}}{t_{1\rm pk}}\right)^{\frac{3(1-p)}{8-a(3+p)}}$$

$$\xi_{\rm c} \approx 2^{\frac{a}{2(4-k)}} \left(\frac{t_{\rm pk}}{t_{\rm 1pk}}\right)^{\frac{3-k}{4-k}} q^{2(b-1)-\frac{a}{4-k}}$$

$$\xi_{\rm c} = \left(\frac{t_{\rm pk}}{t_*}\right)^{\frac{2(b-1)(k-3)}{8-a-2k}} 2^{\frac{a(1-b)}{8-a-2k}} q^{\frac{4(b-1)(4-k)}{8-a-2k}}$$

PB, Granot & Gill 20

Spectral evolution – Unique regime for structured jets

During Angular structure dominated emission phase, $\Gamma(\theta_{obs}) \approx const$ -> Synchrotron frequencies evolve as in pre-deceleration phase

PB, Gill & Granot 22

170817 as a test case

• Single peaked light-curve + shallow rise & $t_{pk} > 7t_{dec}(\theta_{min,0})$ constrains b, Γ_c , and $\Gamma(\theta_{min,0}) \equiv \Gamma$ of initially dominant material

 $I(\theta_{min,0}) \approx 5 - 7$ constrained by 3 independent approaches: Afterglow light-curve analysis Superluminal motion – Flux centroid velocity Compactness constraint from prompt emission

Orphan afterglows

Ratio of off to on axis orphan afterglow detections sensitively depends on survey characteristics (limiting flux, cadence, etc.) Chand, Granot, PB (in perp.)

Orphan afterglows

 Well-defined parameter space for orphan afterglows: differentiate from other transients

 Surveys can be optimized for specific goals (e.g. off-axis detections)

Chand, Granot, PB (in perp.)

Constrain existence of 'dirty fireballs'

Evidence for (mildly) off-axis TDE jets?

- Simple top hat slightly off-axis can explain radio lightcurve with no energy injection
- Allows estimate of jet opening angle $\sim 21^{\circ}$

- Swift J1644+57 First jetted TDE
- On-axis equipartition analysis requires increase in energy for over 200 days after trigger

PB, Piran, Matsumoto 2023

Very steep jet, far off-axis – AT2018hyz

- Flux rises as $t^{4.2\pm0.9}$
 - Well fit by forward modeling with far off-axis jet, $\theta_0 \sim 7^\circ$, $\theta_{obs} \sim 42^\circ$
- Large energy required $E_k > 3 \cdot 10^{52} erg$

Sfaradi, Horesh, PB, Piran et al. 23

Conclusions

Shallow jets energy structure important even on-axis – GRB 221009A and other energetic GRBs match this

- At $\theta_c \leq \theta_{obs} \leq 2\theta_c$ X-ray plateaus and flares are naturally produced by debeamed emission from core and reproduce observed light-curves, correlations with prompt properties
- θ_{obs} ≥ 2θ_c Two qualitative types of afterglows predicted – single or double peaked. Light-curve shape and spectral evolution determined by few key parameters
- Orphan afterglows distinct from other transients – surveys can be optimized to find off-axis bursts

Thank You!

