

Magneto-rotational supernovae as progenitors of IGRBs

Miguel A. Aloy

Departamento de Astronomía y Astrofísica

collaborators M. Obergaulinger, M. Bugli, J. Guilet, M. Reichert, A. Arcones, A. Griffiths

Playa del Carmen, 5 – 12 - 2024

GRB+CE2024

Stellar rotation and magnetic fields

- HN branch unlikely neutrino driven; MRSN?
- Magnetic fields + rotation allow for collimated outflows if the strength and topology are adequate
- Focus here: on relatively fast rotating models with different degrees of magnetic energy and low metallicity (i.e., likely progenitors of long GRBs and SLSNe).
 - Formation of central engine.
 - Collimated ejecta.
 - Nucleosynthetic signature.

Miquel A. Alov

Vniver§itat döValència

v-RMHD models (2D/3D)

Originally rotating(Woosley & Heger 2006)

- 35OC: standard collapsar progenitor; Z =0.1Z $_{\odot}$, fast rotating, M_{Fe} =2.02 M $_{\odot}$.
- stellar evolution (SE) includes rotation and magnetic fields (TS dynamo).
- mass @ collapse ~ 28 M_{\odot} .

Goal 1: Impact of the variation of stellar evolution parameters of fast-rotating, cores (M_{ZAMS}=35M_☉) on compact remnants and explosion types other cores of 20Mo in Obergaulinger, Just & Aloy (2018; JPhG)

Obergaulinger & Aloy (2017, MNRAS, 469, L43) Obergaulinger & Aloy (2020, MNRAS, 492, 4631) - P1 Aloy & Obergaulinger (2021, MNRAS, 500, 4365) - P2 Obergaulinger & Aloy (2021, MNRAS, 503, 4942) - P3

models		Short name	Bp	Β _φ	B-profile	Ω-profile	ξ 2.5
35OC-Rw	W	(=weak field)	10 ¹⁰	10 ¹⁰	Dipole	Original	0.49
350C-RO	0	(=original field)	5x10 ¹⁰	10 ¹²	Original	Original	0.49
35OC-Rp3	Ρ	(=interm. field)	1.5x10 ¹¹	10 ¹²	Original*	Original	0.49
350C-Rs	S	(strong field)	10 ¹²	10 ¹²	Dipole	Original	0.49

s_1

Stellar rotation + variations in B-field

Reference model O:

- SN mediated by v's + B-fields + rotation
- highly collimated

Stellar rotation + variations in B-field

Reference model O:

- SN mediated by v's + B-fields + rotation
- highly collimated
- PNS reaches very high mass resulting from balance accretion/ejection
- BH collapse prevented for a long time (>1.5 s in 3D) by centrifugal forces
- Result: PM + SN

20 C

Models with smaller *j* in progenitor (W):

- PNS may collapse to a BH (but after long time)
 - ➡ If a BH forms: two stage scenario (spinar + collapsar)

Disagreement with Woosley & Heger (2006).

Qualitative agreement with Dessart+08 find that 35OC *is very susceptible to early MR-explosion inhibiting the PNS growth and making a later BH collapse unlikely* (diminishing the prospects of a collapsar progenitor)

CAVEAT: t_{DF} ~ 9.3s will BH form before disc?

Collapsar disc formation

- Expected formation @ t_{DF} ~ 9.3 s; M_{DF} ~ 7.5 M_{\odot} (ref. model).
- However, (*partly*) *inhibited by explosion* (also along the equator!)
- Longer simulations needed to fully cover disk formation.
- Disk may form once the polar ejecta breaks out of the stellar surface.
- A collapsar may form, but the delay between SN ejecta and (posterior) ultrarelativistic ejecta could be significant.

Prompt post-bounce evolution

Diversity of explosions (I)

~

જ

Energy

Magneto-)Rotational

- For a fixed stellar progenitor (fixed mass) and variations of Ω / B: most models eventually achieve shock revival, but driven by distinct mechanisms (cf. Burrows+20)
 - 1. Standard v-driven SN + hydroinstabilities, but followed by collapse to a BH; 35OC-Sw/W.
 - 2. Rapid rotation creates the conditions for bipolar explosion, namely, *anisotropic* v-emission concentrated along the rotational axis; 35OC-{Rw, RRw, RO} / O.
- 3. Early magneto-rotational explosions launching moderately relativistic outflows (v ~ c/3) and producing hypernovae; 35OC-Rs/S (jetted explosions are a solid result in 3D Winteler+12, Mösta+14,15, 18; Kuroda+20).
- Ejecta collimation correlates with magneto-rotational energy in the progenitor

Production of r-proces

L1-90

L2

н

- במוזע ואורכוזים ווומע עובוע עם נט סוע מוטטפסט מבמה
- Critical phenomenon occurring in the first tens ms with matter close to PNS and strong enough B

Summary and conclusions

- Explosion success and type (v-/ MHD-driven) tightly linked to rotation profile and magnetic topology/strength.
- Feedback of the explosion dynamics on the compact remnant: PNS mass growth due to equatorial accretion -PNS mass reduction by mass ejection.
- MRSNe intrinsically anisotropy: strong dependence on the B-field topology.
- Nucleosynthesis calculations of 2D/3D models confirm MRSN as additional sources of r-process nuclei (complementary to NS-mergers).
- R-process 3rd-peak yields on reach of the most magnetised, dipolar-B models.

